Лечение суставов — артроз, артрит, остеохондроз и многое другое

Плазматическая мембрана участвует во взаимодействии клеток


Ответы@Mail.Ru: Помогите с биологией!! ! перечислите функции мембраны и ее строение.

Наружная плазматическая мембрана осуществляет ряд функций, необходимых для жинедеятельности клетки: 1. Защищает цитоплазму от физических и химических повреждений, 2. Делает возможным контакт и взаимодействие клеток в тканях и органах, 3. Избирательно обеспечивает транспорт питательных веществ в клетку, 4. Выведение конечных продуктов обмена, 5. Осуществляет фагоцитоз и пиноцитоз. Столь сложным функциям соответствует и строение плазмалеммы. *Мембрана есть и у большинства органелл клетки. Без её участия невозможны биосинтез белков и фотосинтез углеводов.

строоение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки) , предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно. Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6). Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки) . Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки) . На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям. Рис. 1.6. Схема строения мембраны: а — трехмерная модель; б — плоскостное изображение; 1 — белки, примыкающие к липидному слою (А) , погруженные в него (Б) или пронизывающие его насквозь (В) ; 2 — слои молекул липидов; 3 — гликопротеины; 4 — гликолипиды; 5 — гидрофильный канал, функционирующий как пора. В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды) . Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс. Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью. Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях. Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание — необходимый этап, предшествующий оплодотворению. Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как инфо

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают. Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки. Нравится Пожаловаться

touch.otvet.mail.ru

2.1.2. Функции плазматической мембраны.

Плазматическая мембрана выполняет множество функций. Перечислим наиболее важные.

  • Перенос веществ через мембрану. Через мембрану осуществляется транспорт веществ в обе стороны мембраны.

  • Перенос информации через мембрану. На мембране информация из вне воспринимается преобразуется и передаётся в клетку или из клетки. Существенную роль при это м играют рецепторы мембран.

  • Защитная роль. а) защищает содержимое клетки от механических повреждений, химических реагентов и биологической агрессии, например от проникновения вирусов и др.;

б) в многоклеточном организме рецепторы плазматической мембраны формируют иммунный статус организма;

в) в многоклеточном организме мембрана обеспечивает протекание реакции фагоцитоза.

  • Ферментативная - в мембранах находятся различные ферменты (например, фосфолипаза А и др.), которые осуществляют целый ряд ферментативных реакций.

  • Гликопротеины и гликолипиды на цитоплазматической мембране осуществляют контакт с мембранами других клеток.

Некоторые из перечисленных функций рассмотрим более детально.

а. Транспортная функция.Через мембрану внутрь клетки и наружу происходит перемещение различных веществ, в том числе и лекарственных препаратов. В зависимости от размера переносимых через мембрану молекул различают два вида транспорта: без нарушения целостности мембраны и с нарушением целостности мембраны. Первый тип транспорта может осуществляется двумя путями – без затрата энергии (пассивный транспорт) и с затратой энергии (активный транспорт) (см. рис. 4). Пассивный перенос происходит за счёт диффузии по электрохимическому градиенту в результате броуновского движения атомов и молекул. Этот вид транспорта может осуществляться непосредственно через липидный слой, без какого-либо участия белков и углеводов или при помощи специальных белков – транслоказ. Через липидный слой в основном транспортируются молекулы веществ, которые растворимы в жирах, и малые незаряженные или слабозаряженные молекулы, такие каквода, кислород, углекислый газ, азот, мочевина, жирные кислоты, а также многие органические соединения (например, наркотики) хорошо растворимые в жирах. Транслоказы, могут переносить вещество через мембраны в сторону его меньшей концентрации, не затрачивая энергии, при помощи двух различных механизмов – через канал, который проходит внутри белка, или путём соединения выступающей из мембраны части белка с веществом, поворотом комплекса на 1800и отсоединением вещества от белка. Диффузия веществ через мембрану с участием белков важна тем, что она идётзначительно быстреепростой диффузии, через липидный слой без участия белков. Поэтому диффузия, в которой принимают участие транслоказы, называют облегчённой диффузией. По такому принципу в клетку транспортируются некоторые ионы (например, ион хлора) и полярные молекулы, а также глюкоза.

Для активного переноса веществ через мембрану характерны три свойства:

  1. Активный перенос осуществляется против градиента концентрации.

  2. Осуществляется белком переносчиком.

  3. Идёт с затратой энергии.

Энергия при активном переносе веществ необходима для того, чтобы перенести вещество против градиента его концентрации. Системы активного переноса часто называют мембранными насосами. Энергия в этих системах может быть получена из различных источников, чаще всего таким источником служит АТФ. Расщепление фосфатных связей в АТФ осуществляет интегральный белок-фермент АТФ-аза. Поэтому этот фермент и находится в мембране многих клеток в виде интегрального белка. Важно то, что этот фермент не только освобождает энергию из АТФ, но и осуществляет перемещение вещества. Поэтому система активного переноса состоит чаще всего из одного белка - АТФ-азы, который получает энергию и перемещает вещество. Иными словами, процесс перемещения и энергообеспечения в АТФ-азе сопряжены. В зависимости от того, какие вещества перекачивает АТФ-аза насосы называют или Na+, K+- АТФ-аза или Ca2+-АТФ-аза. Первые регулируют содержание в клетке натрия и калия, вторые кальция (этот тип насосов чаще всего размещён на каналах ЭПС). Сразу же отметим важный для медицинских работников факт: для успешной работы калий-натриевого насоса, клетка затрачиваетоколо 30%энергии основного обмена. Это очень большой объём. Эта энергия тратится на поддержку определённых концентраций натрия и калия в клетке и межклеточном пространстве;- в клетке содержится калия больше, чем в межклеточном пространстве, натрия, наоборот, больше в межклеточном пространстве, чем в клетке. Такое распределение, далёкое от осмотического равновесия, обеспечивает наиболее оптимальный режим работы клетки.

Транспорт веществ через мембраны

Пассивный

(без затраты энергии)

Активный

(с затратой энергии)

Простая диффузия

( без участия белков)

Облегчённая диффузия

(с участием белков)

Путём переворота

белка с веществом

на 1800

Рис. 4. Классификация типов транспорта веществ через мембрану.

Путём активного переноса происходит перемещение через мембрану неорганических ионов, аминокислот и сахаров, практически всех лекарственных веществ, имеющих полярные молекулы – парааминобензойная кислота, сульфаниламиды, йод, сердечные гликозиды, витамины группы В, кортикостероидные гормоны и др.

Для наглядной иллюстрации процесса переноса веществ через мембрану мы приводим (с небольшими изменениями) рисунок 5 взятый из книги «Молекулярная биология клетки» (1983) Б. Альбертса и др. учёных, считающихся лидерами в разработке теории

Транспортируемая молекула

Канальный Белок

белок переносчик

Липидный Электрохимич.

бислой градиент

Затрата

энергии

Простая диффузия Облегчённая диффузия

Пассивный транспорт Активный транспорт

Рис 5. Многие мелкие незаряженные молекулы свободно проходят через липидный бислой. Заряженные молекулы, крупные незаряженные молекулы и некоторые мелкие незаряженные молекулы проходят через мембраны по каналам или порам либо с помощью специфических белков переносчиков. Пассивный транспорт всегда направлен против электрохимического градиента в сторону установления равновесия. Активный же транспорт осуществляется против электрохимического градиента и требует энергетических затрат.

трансмембранного переноса, отражены основные типы переноса веществ через мембрану. Следует отметить что белки, участвующие в трансмембранном переносе, относятся к интегральным белкам и чаще всего представлены одним сложноорганизованным белком.

Перенос высокомолекулярных молекул белка и др. больших молекул через мембрану в клетку осуществляется эндоцитозом (пиноцитоз, фагоцитоз и эндоцитоз), а из клетки – экзоцитозом. Во всех случаях эти процессы отличаются от вышеизложенных тем, что переносимое вещество (частица, вода, микроорганизмы или др.) вначале упаковывается в мембрану и в таком виде переносится в клетку или выделяется из клетки. Процесс упаковки может происходить как на поверхности плазматической мембраны, так и внутри клетки

б. Перенос информации через плазматическую мембрану.

Кроме белков, участвующих в переносе веществ через мембрану, в ней выявлены сложные комплексы из нескольких белков. Пространственно разделённые, они объединены одной конечной функцией. К сложно устроенным белковым ансамблям относится комплекс белков, отвечающих за производство в клетке очень мощного биологически активного вещества – цАМФ (циклический аденозинмонофосфат). В этом ансамбле белков имеются как поверхностные, так и интегральные белки. Например, на внутренней поверхности мембраны расположен поверхностный белок, который носит название G– белок. Этот белок поддерживает взаимоотношения между двумя рядом расположенными интегральным белками – белком, который называется адреналиновый рецептор и белком - ферментом – аденилатциклазой. Адренорецептор способен соединятся с адреналином, который попадает из крови в межклеточное пространство и возбуждаться. Это возбуждениеG– белок передаёт на аденилатциклазу – фермент, способный производить активное вещество – цАМФ. Последний, поступает в цитоплазму клетки и активирует в ней самые различные ферменты. Например, активируется фермент, расщепляющий гликоген до глюкозы. Образование глюкозы приводит к повышению активности митохондрий и повышению синтеза АТФ, которая поступает в качестве носителя энергии во все клеточные отсеки, усиливая работу лизосомы, натрий-калиевых и кальциевых насосов мембраны, рибосом и т.д. повышая в конечном итоге жизнедеятельность практически всех органов, особенно мышц. На этом примере, хотя и очень упрощенном, видно как связана деятельность мембраны с работой других элементов клетки. На бытовом уровне эта сложная схема выглядит достаточно просто. Представьте, что на человека неожиданно набросилась собака. Возникшее чувство страха приводит к выбросу в кровь адреналина. Последний, связывается с адренорецепторами на плазматической мембране изменяя при этом химическую структуру рецептора. Это, в свою очередь, приводит к изменению структурыG– белка. ИзменённыйG– белок становиться способным активировать аденилатциклазу, которая усиливает производство цАМФ. Последний стимулирует образование глюкозы из гликогена. В результате усиливается синтез энергоёмкой молекулы АТФ. Повышенное образование энергии у человека в мышцах приводит к быстрой и сильной реакции на нападение собаки (бегство, защита, борьба и т.д.).

studfiles.net

Строение клетки

Гиалоплазма — основное вещество цитоплазмы, жидкая среда, заполняющая внутреннее пространство  клетки. Входяшие в ее состав ферменты, участвуют в синтезе аминокислот, нуклеотидов, сахаров. Здесь протекает часть реакций энергетического и пластического обмена. Благодаря гиалоплазме объединяются все клеточные структуры и обеспечивается их химическое взаимодействия друг с другом. В этом состоит ее важнейшая роль.

В клетках живых организмов постоянно присутствуют специализированные структуры — органоиды. Они имеют определенное строение и осуществляют строго определенные функции. Органоиды могут быть мембранными, которые отграниченны от гиалоплазмы мембранами, и немембранными. Кроме того, органоиды подразделяют на общие, имеющиеся у большинства клеток (митохондрии, эндоплазматическая сеть, рибосомы и т.д.), и специальные, которые характерны только для некоторых специализированных клеток (реснички, жгутики).

Клеточный центр (центросома).

Клеточный центр или центросома — органоид цитоплазмы, который не отделен от нее мембраной. Он играет важную роль и при делении клетки, и непосредственно участвует в формировании ахроматинового веретена, необходимого для правильной ориентации и расхождения хромосом. В промежутках между делениями клетки клеточный центр участвует в образовании внутриклеточного цитоскелета, который состоит из микротрубочек и микрофиламентов. Основной частью клеточного центра являются центриоли — два небольших цилиндрических тельца, состоящих из 27 микротрубочек, которые сгруппированны в девять групп по три в каждой. Обычно оси двух центриолей перпендикулярны относительно друг друга. От них отходят короткие микротрубочки, участвующие в формировании цитоскелета. Хорошо выраженный клеточный центр есть в клетках животных, грибов и некоторых растений (например, водоросли, мхи или папоротники). В клеточном центре клеток покрытосеменных растений центриоли отсутствуют.

Рибосомы.

Рибосомы — очень важный обязательный органоид всех клеток, как эукариот, так и прокариот, так он обеспечивает одно из основных проявлений жизни — синтез белка. У рибосом нет мембраны, они состоят из рибосомальной РНК (рРНК) и большого количества белков. В составе каждой рибосомы есть две субъединицы: большая и малая. Основная функция малой субъединицы — «расшифровка» генетической информации. Она связывает информационную РНК (иРНК) и транспортную РНК (тРНК), несущие аминокислоты. Функция большой субъединицы — образование пептидной связи между аминокислотами, принесенными в рибосому двумя соседними молекулами тРНК. Белки и рРНК, входящие в состав рибосом, синтезируются в ядре (в ядрышке), а затем поступают в цитоплазму. Кроме этого рибосомы находятся в органоидах, имеющих свой собственный генетический аппарат, — в митохондриях и пластидах. Рибосомы располагаются в цитоплазме клеток либо свободно, либо на поверхности шероховатой эндоплазматической сети. Иногда, на одной молекуле иРНК собирается несколько рибосом (подобная структура называется полисомой). По размеру цитоплазматические рибосомы эукариот несколько больше рибосом прокариот и рибосом митохондрий и пластид.

Эндоплазматическая сеть (эндоплазматический ретикулум).

Эндоплазматическая сеть (эндоплазматический ретикулум) пронизывает всю цитоплазму большинства клеток. Она состоит из многочисленных однослойных мембранных трубочек, цистерн и каналов самой разнообразной формы и размера, которые соединяются с плазматической и ядерной мембранами.

Эндоплазматические сети делятся на два типа: гладкие и шероховатые. На мембранах шероховатой сети располагаются рибосомы. В этих рибосомах синтезируются белки, поступающие затем в полости эндоплазматической сети и транспортирующиеся по ним к комплексу Гольджи. На мембранах гладкой эндоплазматической сети расположены ферментные комплексы, участвующие в синтезе углеводов, жиров, пигментов. В некоторых специализированных клетках эндоплазматическая сеть выполняет специальные функции. Так, в мышечных клетках в эндоплазматической сети накапливается кальций, который освобождается в процессе мышечного сокращения и удаляется обратно при расслаблении. Некоторые клетки (например, эритроциты) при созревании теряют эндоплазматическую сеть.

Комплекс Гольджи.

Комплекс Гольджи (аппарат Гольджи) расположен обычно вблизи ядра и состоит из сложной сети однослойных мембранных образований разной формы и размера. Как правило, это группа крупных плоских полостей, расположенных стопками, с отходящими от них трубочками и пузырьками.

В комплексе Гольджи происходит накопление продуктов синтетической деятельности клеток (белков, углеводов и жиров) и веществ, поступающих в клетку из окружающей среды. Здесь может происходить дополнительная модификация этих веществ, например, к белкам присоединяются углеводные компоненты с образованием гликопротеинов. После этого вещества могут поступать в цитоплазму в виде капель или зерен, или выводиться (секретироваться) из клетки. В образовании лизосом и вакуолей принимают участие мембранные трубочки и пузырьки комплекса Гольджи.

Лизосомы.

Лизосомы — мелкие однослойные мембранные пузырьки, которые образуются в комплексе Гольджи. Они содержат большое количество ферментов (приблизительно 40), и способны расщеплять и переваривать различные вещества — белки, полисахариды, жиры и нуклеиновые кислоты, как поступающие в клетку извне, так и образующиеся в самой клетке. Т.е. лизосомы выполняют функцию «пищеварительных центров» клетки. Много лизосом обнаруживается в лейкоцитах, где они участвуют в переваривании микроорганизмов. Отслужившие свой срок и поврежденные макромолекулы (белки, РНК и т.д.) также поступают в лизосомы, где расщепляются до мономеров и вновь выходят в цитоплазму, чтобы включиться в обмен веществ. Если мембраны лизосом разрушаются, их пищеварительные ферменты начинают разрушение клеточных органоидов и других структур, приводя к гибели клетки. Такой процесс, например, имеет место при рассасывании временных органов эмбрионов или личинок (жабры и хвост у головастика).

Митохондрии.

Митохондрии представляют собой микроскопические тельца различной формы, окруженные двухслойной мембраной. Их размеры варьируются от 0,2 до 7 нм.

Наружная мембрана метохондрий гладкая, а внутренняя образует многочисленные ветвящиеся складки, направленные внутрь митохондрии, так называемые кристы, значительно увеличивающие площадь внутренней мембраны. Матрикс —  внутреннее содержимое метохондрии, т.е. пространство, ограниченное внутренней мембранной. В матриксе метохондрии присутствуют многочисленные ферменты. В процессе кислородного этапа энергетического обмена (клеточного дыхания) эти ферменты участвуют в окислительном расщеплении жиров, белков и углеводов до воды и углекислого газа. Во внутренней мембране митохондрий содержатся белки-переносчики электронов и другие ферменты, которые участвуют в окислении биологических субстратов и образовании АТФ в процессе окислительного фосфорилирования. Внутренняя мембрана митохондрий практически непроницаема для протонов, поэтому на ней в процессе окисления субстратов возникает градиент концентрации протонов, энергия которого используется для синтеза АТФ. Таким образом, митохондрии представляют собой «энергетические станции» клеток, основной функцией которых является окисление различных веществ, сопряженное с синтезом АТФ. В митохондриях имеется своя собственная кольцевая молекула ДНК и весь аппарат, необходимый для синтеза белка (рибосомы, иРНК и тРНК). Количество митохондрий в клетках может варьироваться от одной или нескольких до многих десятков. Они способны делиться, образуя дочерние митохондрии.  Митохондрии встречаются в клетках всех аэробных (обитающих в кислородных условиях) эукариот, т.е. в растениях, грибах и животных.

Пластиды.

Пластиды — цитоплазматические органоиды, окруженные двухслойной мембраной,  присутствуют только в растительных клетках. В клетках животных и грибов пластиды отсутствуют. Как и в митохондриях, в пластидах есть свой собственный генетический аппарат — кольцевая молекула ДНК, рибосомы и различные типы РНК. Различают три типа пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты — зеленые пластиды. Их зеленый цвет следствие того, что в них присутствует зеленый пигмент хлорофилла. Хлоропласты присутствуют в фотосинтезирующих клетках всех зеленых растений. По своей форме они похожи на линзу. Хлоропласты водорослей  называют хроматофорами. Они имеют разнообразную форму (спиральную, сетчатую, звездчатую).

Хлоропласты окружены двухслойной мембраной. Наружная мембрана гладкая, а во внутренней образуются многочисленные выросты, которые формируют линзовидные образования — тилакоиды, собранные в стопки — граны. Название внутреннего содержимого хлоропластов — строма. В мембранах тилакоидов расположены пигменты и белки-переносчики электронов, участвующие в световой фазе фотосинтеза. Под действием света они разлагают воду. При этом выделяется свободный кислород, а освобождающиеся электроны переносятся на молекулу НАДФ+, восстанавливая ее до НАДФН. Процесс переноса электронов сопряжен с синтезом АТФ (фотофосфорилирование). В строме локализуются ферменты, участвующие в темновой фазе фотосинтеза. С использованием АТФ и НАДФН, образующихся в световой фазе, они синтезируют глюкозу из воды и углекислого газа. Хлоропласты могут терять хлорофилл и превращаться в хромопласты и лейкопласты. Такой процесс происходит, например, осенью при пожелтении и покраснении листвы и при созревании зеленых плодов.

Хромопласты — это пластиды, окрашенные в желтые, красные и оранжевые цвета, могут быть различной формы и размера. Их цвет обусловлен присутствием различных пигментов (каротинов, ксантофиллов, ликопина и др.). Хромопласты могут определять окраску различных частей растений: стеблей, цветков, плодов, листьев. Под воздействием света хромопласты могут превращаться в хлоропласты. Например, это происходит при позеленении корнеплодов моркови.

Лейкопласты — это бесцветные пластиды, лишенные пигментов,  по форме и размерам близкие к хлоропластам. В них происходит накопление запасных веществ (крахмала, жиров, белков). Лейкопласты содержатся в разных частях растений: корнях, клубнях и т.д. Под воздействием света они также, как и хромопласты, могут превращаться в хлоропласты. Например, клубни картофеля зеленеют на свету.

Вакуоли.

Вакуоли представляют собой окруженные однослойной мембраной округлые полости, заполненные клеточным соком, содержащим различные минеральные и органические вещества (углеводы, белки, алкалоиды, пигменты, дубильные вещества, различные соли и их кристаллы и т.д.). Вакуоли образуются из пузырьков комплекса Гольджи. Крупные вакуоли типичны для растительных клеток, где они участвуют в поддержании тургора; в животных клетках они обычно не встречаются. У одноклеточных организмов вакуоли выполняют специальные функции пищеварения (пищеварительные вакуоли) и выведения из клеток излишков воды и продуктов обмена (сократительные вакуоли).

Специальные органоиды.

Специальные органоиды присутствуют в специализированных клетках, выполняющих определенные функции. Так, реснички и жгутики отвечают за различные виды движения. С их помощью осуществляется движение одноклеточных и многоклеточных организмов, зооспор водорослей, сперматозоидов млекопитающих и т.д. Реснитчатый эпителий покрывает пищевод и дыхательные пути животных и человека, жабры рыб, а также, поверхность тела ресничных червей. Миофибриллы — нити, состоящие из белков актина и миозина, и обеспечивающие сократительную активность всех типов мышц.

Кроме органоидов, в клетках могут присутствовать различные включения (крахмальные зерна, капли жиров, гранулы белка или гликогена). Как правило, они выполняют запасные функции. Иногда в виде включений могут накапливаться продукты жизнедеятельности клеток — кристаллы органических кислот и пигментов.

В следующем разделе мы рассмотрим ядро клеток эукариот.

www.studentguru.ru

Глава 13. Плазматическая мембрана

Плазматическая мембрана, или плазмолемма, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, ограничивающая клетку снаружи, что обусловливает ее непосредственную связь с внеклеточной средой, а следовательно, со всеми веществами и стимулами, воздействующими на клетку. Поэтому плазматической мембране принадлежит роль быть барьером, преградой между сложно организованным внутриклеточным содержимым и внешней средой. В этом случае плазмолемма выполняет не только роль механического барьера, но, главное, ограничивает свободный поток низко- и высокомолекулярных веществ в обе стороны через мембрану. Более того, плазмолемма выступает как структура “узнающая”, рецептирующая, различные химические вещества и регулирующая избирательно транспорт этих веществ в клетку и из нее. Другими словами, плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ и выполняет роль первичного клеточного анализатора. В этом отношении плазмолемму можно считать клеточным органоидом, входящим в вакуолярную систему клетки. Как и другие мембраны этой системы (мембраны лизосом, эндосом, аппарата Гольджи и др.) она возникает и обновляется за счет синтетической активности эндоплазматического ретикулума и имеет сходную композицию. Как ни странно, но плазматическую мембрану можно уподобить мембране внутриклеточной вакуоли, но вывернутой наизнанку: она не окружена гиалоплазмой, а окружает ее.

Барьерно-транспортная роль плазмолеммы

Окружая клетку со всех сторон, плазматическая мембрана выполняет роль механического барьера. Для того, чтобы проколоть ее с помощью микроигл или микропипеток, требуется довольно большое усилие. При давлении на нее микроиглы она сначала сильно прогибается, а лишь затем прорывается. Искусственные липидные мембраны менее устойчивы. Эта механическая устойчивость плазматической мембраны может определяться дополнительными компонентами, такими как гликокаликс и кортикальный слой цитоплазмы (рис. 127).

Гликокаликс представляет собой внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов. Эти цепочки содержат такие углеводы как манноза, глюкоза, N-ацетилглюкозамин, сиаловая кислота и др. Такие углеводные гетерополимеры образуют ветвящиеся цепочки, между которыми могут располагаться выделенные из клетки гликолипиды и протеогликаны. Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что значительно снижает в этой зоне скорость диффузии различных веществ. Здесь же могут “застревать” выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров (внеклеточное пищеварение) до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.

В электронном микроскопе, особенно при специальных методах контрастирования полисахаридов, гликокаликс имеет вид рыхлого волокнистого слоя, толщиной 3-4 нм, покрывающего всю поверхность клетки. Особенно хорошо гликокаликс выражен в щеточной каемке клеток всасывающего эпителия кишечника (энтероциты), однако он обнаружен практически у всех животных клеток, но степень его выраженности различна (рис. 128).

Механическая устойчивость плазматической мембраны, кроме того, обеспечивается структурой примыкающего к ней со стороны цитоплазмы кортикального слоя и внутриклеточных фибриллярных структур. Кортикальный (от слова - cortex -кора, кожица) слой цитоплазмы, лежащий в тесном контакте с липопротеидной наружной мембраной, имеет ряд особенностей. Здесь в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки, но в большом количестве встречаются фибриллярные элементы цитоплазмы - микрофиламенты и часто микротрубочки. Основным фибриллярным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы (подробнее о скелетно-двигательной системе клеток см. ниже). Роль этих связанных с актином белков очень важна, так как она объясняет их участие в связи, в “заякоревании” интегральных белков плазматической мембраны.

У многих простейших, особенно у инфузорий, плазматическая мембрана принимает участие в образовании пелликулы, жесткого слоя, часто определяющего форму клетки. К плазматической мембране здесь изнутри могут примыкать мембранные мешочки; в этом случае у поверхности клеток имеются три мембранных слоя: собственно плазматическая мембрана и две мембраны пелликулярных альвеол. У инфузории туфельки пелликула образует утолщения, располагающиеся в виде шестиугольников, в центре которых выходят реснички (рис. 129). Жесткость пелликулярных образований может быть связана также с элементами цитоплазмы, подстилающими плазматическую мембрану, с кортикальным слоем. Так, в гребнях пелликулы эвглены вблизи мембраны обнаруживаются кроме мембранных вакуолей параллельные пучки микротрубочек и микрофиламентов. Такая фибриллярная периферическая арматура вместе со складчатой многослойной мембранной периферией создает жесткую структуру пелликулы.

Барьерная роль плазмолеммы заключается также в ограничении свободной диффузии веществ. Модельные опыты на искусственных липидных мембранах показали, что они проницаемы для воды, газов, малых неполярных молекул жирорастворимых веществ, но совершенно не проницаемы для заряженных молекул (ионы) и для крупных незаряженных (сахара) (рис. 130).

Естественные мембраны так же ограничивают скорость проникновения низкомолекулярных соединений в клетку.

Трансмембранныый перенос ионов и низкомоекулярных соединений

Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы (примерно в 104 раз медленнее). Поэтому если клетку, например эритроцит, поместить в среду, где концентрация солей будет ниже, чем в клетке (гипотония), то вода снаружи устремится внутрь клетки, что приведет к увеличению объема клетки и к разрыву плазматической мембраны (“гипотонический шок”). Наоборот, при помещении эритроцита в растворы солей более высокой концентрации, чем в клетке, произойдет выход воды из клетки во внешнюю среду. Клетка при этом сморщится, уменьшится в объеме.

Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10-4 см/с, что в 100 000раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. Было заключено, что в клеточной мембране, в ее липопротеидном слое существуют специальные “поры” для проникновения воды и ионов. Число их не так велико: суммарная площадь при величине отдельной “поры” около 0,3-0,8 нм должна составлять лишь 0,06% всей клеточной поверхности.

В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-).

Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+.

Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые растворенные молекулы проходят через мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, а другая часть может закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки - переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).

Наличие таких белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных. На табл. 14 показаны концентрации ионов внутри и снаружи клетки.

Таблица 14.

Ион

Внутриклеточная концентрация, мМ

Внеклеточная концентрация, мМ

Na+

5-15

145

K+

140

5

Mg2+

30

1-2

*Ca2+

1-2

2,5-5

Cl-

4

110

*Концентрация Ca2+ в свободном состоянии в цитозоле эукариотических клеток составляет 10-7 М, а снаружи 10-3 М.

Как видно, в этом случае, суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинаковы (150 мМ), изотонична. Но оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.

Такая постоянная работа пермеаз и насосов создает в клетке постоянную концентрацию ионов и низкомолекулярных веществ, создает т.н. гомеостаз, постоянство концентраций осмотически активных веществ. Надо отметить, что примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.

В сочетании с активным транспортом ионов через плазматическую мембрану происходит транспорт различных сахаров, нуклеотидов и аминокислот.

Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)-насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+ и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода.

Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.

Везикулярный перенос: эндоцитоз и экзоцитоз

Макромолекулы такие как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и другие сквозь клеточные мембраны не проходят, в противовес тому как транспортируются ионы и мономеры. Транспорт микромолекул, их комплексов, частиц внутрь клетки и из нее происходит совершенно иным путем - посредством везикулярного переноса. Этот термин означает, что различные макромолекулы, биополимеры, или их комплексы, не могут попадать в клетку сквозь плазматическую мембрану. И не только сквозь нее: любые клеточные мембраны не способны к трансмембранному переносу биополимеров, за исключением мембран, имеющих особые белковые комплексные переносчики - порины (мембраны митохондрий, пластид, пероксисом). В клетку же или из одного мембранного компартмента в другой макромолекулы попадают заключенными внутри вакуолей или везикул. Такой везикулярный перенос можно разделить на два вида: экзоцитоз - вынос из клетки макромолекулярных продуктов, и эндоцитоз - поглощение клеткой макромолекул (рис. 133).

При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключает его в мембранную вакуоль, возникшую за счет впячивания плазматической мембраны. В такую первичную вакуоль, или в эндосому, могут попадать любые биополимеры, макромолекулярные комплексы, части клеток или даже целые клетки, где затем и распадаются, деполимеризуются до мономеров, которые путем трансмембранного переноса попадают в гиалоплазму. Основное биологическое значение эндоцитоза - это получение строительных блоков за счет внутриклеточного переваривания, которое осуществляется на втором этапе эндоцитоза после слияния первичной эндосомы с лизосомой, вакуолью, содержащей набор гидролитических ферментов (см. ниже).

Эндоцитоз формально разделяют на пиноцитоз и фагоцитоз (рис. 134). Фагоцитоз - захват и поглощение клеткой крупных частиц (иногда даже клеток или их частей) - был впервые описан И,И, Мечниковым. Фагоцитоз, способность захватывать клеткой крупные частицы, встречается среди клеток животных, как одноклеточных (например, амебы, некоторые хищные инфузории), так и для специализированных клеток многоклеточных животных. Специализированные клетки, фагоциты характерны как для беспозвоночных животных (амебоциты крови или полостной жидкости), так и для позвоночных (нейтрофилы и макрофаги). Пиноцитоз вначале определялся как поглощение клеткой воды или водных растворов разных веществ. Сейчас известно, что как фагоцитоз так и пиноцитоз протекают очень сходно, и поэтому употребление этих терминов может отражать лишь различия в объемах, массе поглощенных веществ. Общее для этих процессов то, что поглощенные вещества на поверхности плазматической мембраны окружаются мембраной в виде вакуоли - эндосомы, которая перемещается внутрь клетки.

Эндоцитоз, включая пиноцитоз и фагоцитоз, может быть неспецифическим или конститутивным, постоянным и специфическим, опосредуемым рецепторами (рецепторным). Неспецифический эндоцитоз (пиноцитоз и фагоцитоз), так называется потому, что он протекает как бы автоматически и часто может приводить к захвату и поглощению совершенно чуждых или безразличных для клетки веществ, например, частичек сажи или красителей.

Неспецифический эндоцитоз часто сопровождается первоначальной сорбцией захватывающего материала гликокаликсом плазмолеммы. Гликокаликс из-за кислых групп своих полисахаридов имеет отрицательный заряд и хорошо связывается с различными положительно заряженными группами белков. При таком адсорбционном неспецифическом эндоцитозе поглощаются макромолекулы и мелкие частицы (кислые белки, ферритин, антитела, вирионы, коллоидные частицы). Жидкофазный пиноцитоз приводит к поглощению вместе с жидкой средой растворимых молекул, которые не связываются с плазмолеммой.

На следующем этапе происходит изменение морфологии клеточной поверхности: это или возникновение небольших впячиваний плазматической мембраны, инвагинации, или же это появление на поверхности клетки выростов, складок или “оборок” (рафл - по-английски), которые как бы захлестываются, складываются, отделяя небольшие объемы жидкой среды (рис. 135, 136). Первый тип возникновения пиноцитозного пузырька, пиносомы, характерен для клеток кишечного эпителия, эндотелия, для амеб, второй - для фагоцитов и фибробластов. Эти процессы зависят от поступления энергии: ингибиторы дыхания блокируют эти процессы.

Вслед за такой перестройкой поверхности следует и процесс слипания и слияния контактирующих мембран, который приводит к образованию пеницитозного пузырька (пиносома), отрывающегося от клеточной поверхности и уходящего вглубь цитоплазмы. Как неспецифический так и рецепторный эндоцитоз, приводящий к отщеплению мембранных пузырьков, происходит в специализированных участках плазматической мембраны. Это так называемые окаймленные ямки. Они называются так потому, что со стороны цитоплазмы плазматическая мембрана покрыта, одета, тонким (около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания, ямки (рис. 137). Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина, ассоциированного с рядом дополнительных белков. Три молекулы клатрина вместе с тремя молекулами низкомолекулярного белка образуют структуру трискелиона, напоминающего трехлучевую свастику (рис. 138). Клатриновый трискелионы на внутренней поверхности ямок плазматической мембраны образуют рыхлую сеть, состоящую из пяти- и шестиугольников, в целом напоминающую корзинку. Клатриновый слой одевает весь периметр отделяющихся первичных эндоцитозных вакуолей, окаймленных пузырьков.

Клатрин относится к одному из видов т.н. “одевающих” белков (COP - coated proteins). Эти белки связываются с интегральными белками-рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы, первичного эндосомного пузырька - “окаймленного” пузырька. в отделении первичной эндосомы участвуют также белки - динамины, которые полимеризуются вокруг шейки отделяющегося пузырька (рис. 139).

После того как окаймленный пузырек отделится о плазмолеммы и начнет переноситься вглубь цитоплазмы клатриновый слой распадается, диссоциирует, мембрана эндосом (пиносом) приобретает обычный вид. После потери клатринового слоя эндосомы начинают сливаться друг с другом.

Было найдено, что мембраны окаймленных ямок содержат сравнительно мало холестерина, что может определять снижение жесткости мембран и способствовать образованию пузырьков. Биологический смысл появления клатриновой “шубы” по периферии пузырьков, возможно, заключается в том, что он обеспечивает сцепление окаймленных пузырьков с элементами цитоскелета и последующий их транспорт в клетке, и препятствует их слиянию друг с другом.

Интенсивность жидкофазного неспецифического пиноцитоза может быть очень высокой. Так клетка эпителия тонкого кишечника образует до 1000 пиносом в секунду, а макрофаги образуют около 125 пиносом в минуту. Размер пиносом невелик, их нижний предел составляет 60-130 нм, но обилие их приводит к тому, что при эндоцитозе плазмолемма быстро замещается, как бы “тратится” на образование множества мелких вакуолей. Так у макрофагов вся плазматическая мембрана заменяется за 30 минут, у фибробластов - за два часа.

Дальнейшая судьба эндосом может быть различной, часть из них может возвращаться к поверхности клетки и сливаться с ней, но большая часть вступает в процесс внутриклеточного пищеварения. Первичные эндосомы содержат в основном захваченные в жидкой среде чужеродные молекулы и не содержат гидролитических ферментов. эндосомы могут сливаться друг с другом при этом увеличиваясь в размере. Они затем сливаются с первичными лизосомами (см. ниже), которые вводят в полость эндосом ферменты, гидролизующие различные биополимеры. Действие этих лизосомных гидролаз и вызывает внутриклеточное пищеварение - распад полимеров до мономеров.

Как уже указывалось, в ходе фагоцитоза и пиноцитоза клетки теряют большую площадь плазмолеммы (см. макрофаги), которая однако довольно быстро восстанавливается при рециклизации мембран, за счет возвращения вакуолей и их встраивания в плазмолемму. Это происходит вследствие того, что от эндосом или вакуолей, так же как и от лизосом могут отделяться небольшие пузырьки, которые вновь сливаются с плазмолеммой. При такой рециклизации происходит как бы “челночный” перенос мембран: плазмолемма - пиносома - вакуоль - плазмолемма. Это ведет к восстановлению исходной площади плазматической мембраны. Найдено, что при таком возврате, рециклизации мембран, в оставшейся эндосоме удерживается весь поглощенный материал.

Специфический или опосредуемый рецепторами эндоцитоз имеет ряд отличий от неспецифического. Главное в том, что поглощаются молекулы, для которых на плазматической мембране есть специфические рецепторы, ассоциирующиеся только с данным типом молекул. Часто такие молекулы, связывающиеся с белками-рецепторами на поверхности клеток, называют лигандами.

Впервые опосредуемый рецепторами эндоцитоз был описан при накоплении белков в ооцитах птиц. Белки желточных гранул, вителлогенины, синтезируются в различных тканях, но затем с током крови попадают в яичники, где связываются со специальными мембранными рецепторами ооцитов и затем с помощью эндоцитоза попадают внутрь клетки, где и происходит отложение желточных гранул.

Другой пример избирательного эндоцитоза представляет собой транспорт в клетку холестерина. Этот липид синтезируется в печени и в комплексе с другими фосфолипидами и белковой молекулой образует т.н. липопротеид низкой плотности (ЛНП), который секретируется клетками печени и кровеносной системой разносится по всему телу (рис. 140). Специальные рецепторы плазматической мембраны, диффузно расположенные на поверхности различных клеток, узнают белковый компонент ЛНП, и образуют специфический комплекс рецептор-лиганд. Вслед за этим такой комплекс перемещается в зону окаймленных ямок и интернализуется - окружается мембраной и погружается вглубь цитоплазмы. Показано, что мутантные рецепторы могут связывать ЛНП, но не аккумулируются в зоне окаймленные ямок. Кроме рецепторов к ЛНП обнаружено более двух десятков других, участвующих в рецепторном эндоцитозе различных веществ, все они используют один и тот же путь интернализации через окаймленные ямки. Вероятно, их роль заключается в накапливании рецепторов: одна и та же окаймленная ямка может собрать около 1000 рецепторов разного класса. Однако у фибробластов кластеры рецепторов ЛНП расположены в зоне окаймленных ямок даже в отсутствие лиганда в среде.

Дальнейшая судьба поглощенной частицы ЛНП заключается в том, что она подвергается распаду в составе вторичной лизосомы. После погружения в цитоплазму окаймленного пузырька, нагруженного ЛНП, происходит быстрая потеря клатринового слоя, мембранные пузырьки начинают сливаться друг с другом, образуя эндосому - вакуоль, содержащую поглощенные ЛНП-частицы, связанные еще с рецепторами на поверхности мембраны. Затем происходит диссоциация комплекса лиганд-рецептор, от эндосомы отщепляются мелкие вакуоли, мембраны которых содержат свободные рецепторы. Эти пузырьки рециклируются, включаются в плазматическую мембрану, и тем самым, рецепторы возвращаются на поверхность клетки. Судьба же ЛНП состоит в том, что после слияния с лизосомами, они гидролизуются до свободного холестерина, который может включаться в клеточные мембраны.

Эндосомы характеризуются более низким значением рН (рН 4-5), более кислой средой, чем другие клеточные вакуоли. Это связано с наличием в их мембранах белков протонного насоса, закачивающих ионы водорода с одновременной затратой АТФ (Н+-зависимая АТФаза). Кислая среда внутри эндосом играет решающую роль в диссоциации рецепторов и лигандов. Кроме того, кислая среда является оптимальной для активации гидролитических ферментов в составе лизосом, которые активируются при слиянии лизосом с эндосомами и приводят к образованию эндолизосомы, в которой и происходит расщепление поглощенных биополимерв.

В некоторых случаях судьба диссоциированных лигандов не связана с лизосомным гидролизом. Так в некоторых клетках после связывания рецепторов плазмолеммы с определенными белками, покрытые клатрином вакуоли погружаются в цитоплазму и переносятся к другой области клетки, где сливаются снова с плазматической мембраной, а связанные белки диссоциируют от рецепторов. Так осуществляется перенос, трансцитозис, некоторых белков через стенку эндотелиальной клетки из плазмы крови во межклеточную среду (рис. 141). Другой пример трансцитоза - перенос антител. Так у млекопитающих антитела матери, могут передаваться детенышу через молоко. В этом случае комплекс рецептор-антитело остается в эндосоме без изменений.

Фагоцитоз

Как уже говорилось, фагоцитоз является вариантом эндоцитоза и связан с поглощением клеткой крупных агрегатов макромолекул вплоть до живых или мертвых клеток. Так же как и пиноцитоз, фагоцитоз может быть неспецифическим (например, поглощение фибробластами или макрофагами частичек коллоидного золота или полимера декстрана) и специфическим, опосредуемым рецепторами на поверхности плазматической мембраны фагоцитирующих клеток. При фагоцитозе происходит образование больших эндоцитозных вакуолей - фагосом, которые затем сливаясь с лизосомами образуют фаголизосомы.

На поверхности клеток, способных к фагоцитозу (у млекопитающих это нейтрофилы и макрофаги) существует набор рецепторов, взаимодействующих с белками-лигандами. Так при бактериальных инфекциях антитела к белкам бактерий связываются с поверхностью бактериальных клеток, образуя слой, в котором Fc-области антител смотрят наружу. Этот слой узнается специфическими рецепторами на поверхности макрофагов и нейтрофилов, и в местах их связывания начинается поглощение бактерии путем обволакивания ее плазматической мембраной клетки (рис. 142).

Экзоцитоз

Плазматическая мембрана принимает участие в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу (см. рис. 133).

В случае экзоцитоза, внутриклеточные продукты, заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазматической мембране. В местах их контактов плазматическая мембрана и мембрана вакуоли сливаются, и пузырек опустошается в окружающую среду. С помощью экзоцитоза происходит процесс рециклизации мембран, участвующих в эндоцитозе.

С экзоцитозом связано выделение синтезированных в клетке разнообразных веществ. Секретирующие, выделяющие вещества во внешнюю среду, клетки могут вырабатывать и выбрасывать низкомолекулярные соединения (ацетилхолин, биогенные амины и др.), а также в большинстве случаев макромолекулы (пептиды, белки, липопротеиды, пептидогликаны и др.). Экзоцитоз или секреция в большинстве случаев происходит в ответ на внешний сигнал (нервный импульс, гормоны, медиаторы и др.). Хотя в ряде случаев экзоцитоз происходит постоянно (секреция фибронектина и коллагена фибробластами). Сходным образом из цитоплазмы растительных клеток выводятся некоторые полисахариды (гемицеллюлозы), участвующие в образовании клеточных стенок.

Большинство секретируемых веществ используется другими клетками многоклеточных организмов (секреция молока, пищеварительных соков, гормонов и др.). Но часто клетки секретируют вещества и для собственных нужд. Так например рост плазматической мембраны осуществляется за счет встраивания участков мембраны в составе экзоцитозных вакуолей, часть элементов гликокаликса выделяется клеткой в виде гликопротеидных молекул и т.д.

Выделенные из клеток путем экзоцитоза гидролитические ферменты могут сорбироваться в слое гликокаликса и обеспечивать примембранное внеклеточное расщепление различных биополимеров и органических молекул. Огромное значение примембранное неклеточное пищеварение имеет для животных. Было обнаружено, что в кишечном эпителии млекопитающих в зоне так называемой щеточной каемки всасывающего эпителия, особенно богатой гликокаликсом, обнаруживается огромное количество разнообразных ферментов. Часть этих же ферментов имеет панкреатическое происхождение (амилаза, липазы, различные протеиназы и др.), а часть выделяется собственно клетками эпителия (экзогидролазы, расщепляющие преимущественно олигомеры и димеры с образованием транспортируемых продуктов).

Рецепторная роль плазмолеммы

Мы уже встречались с этой особенностью плазматической мембраны при ознакомлении с ее транспортными функциями. Белки-переносчики и насосы являются кроме всего также рецепторами, узнающими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, поступающих в клетки.

В качестве таких рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные участки к отдельным веществам могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.

Роль многих клеточных рецепторов заключается не только в связывании специфических веществ или способности реагировать на физические факторы, но и в передаче межклеточных сигналов с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Было найдено, что эти гормоны связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы, после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, - аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером - активатором ферментов - киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глюкагона, вырабатываемого А-клетками островков Лангерганса, гормон связывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкиназу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном - он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.

В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ, активирующий или ингибирующий внутриклеточный фермент или группу ферментов. Таким образом, команда, сигнал от плазматической мембраны передается внутрь клетки. Эффективность этой аденилатциклазной системы очень высока. Так взаимодействие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.

Существует и другой путь, при котором используются другие вторичные мессенджеры, - это т.н. фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нервные медиаторы и белки) активируется фермент фосфолипиза C, которая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу C, которая вызывает активацию каскада киназ, что приводит к определенным клеточным реакциям, а с другой - приводит к освобождению ионов кальция, который регулирует целый ряд клеточных процессов.

Другой пример рецепторной активности - рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, вызывает импульсное поступление Na+ в клетку (деполяризация мембраны), открывая сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо у высших животных уничтожаются в результате иммунологических реакций (см. ниже).

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматической мембране или у ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующими с квантами света. В плазматической мембране светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.

Межклеточное узнавание

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран. При таком межклеточном взаимодействии клеток между плазматическими мембранами всегда остается щель шириной около 20 нм, заполненная гликокаликсом. Обработка ткани ферментами, нарушающими целостность гликокаликса (муказы, действующие гидролитически на муцины, мукополисахариды) или повреждающие плазматическую мембрану (протеазы), приводит к обособлению клеток друг от друга, к их диссоциации. Однако если удалить фактор диссоциации, то клетки могут снова собираться, реагрегировать. Так можно диссоциировать клетки разных по окраске губок, оранжевых и желтых. Оказалось, что в смеси этих клеток образуются два типа агрегатов: состоящие только из желтых и только из оранжевых клеток. При этом смешанные клеточные суспензии самоорганизуются, восстанавливая исходную многоклеточную структуру. Сходные результаты были получены с суспензиями разделенных клеток эмбрионов амфибий; в этом случае происходит избирательное пространственное обособление клеток эктодермы от энтодермы и от мезенхимы. Более того, если для реагрегации используются ткани поздних стадий развития зародышей, то в пробирке самостоятельно собираются различные клеточные ансамбли, обладающие тканевой и органной специфичностью, образуются эпителиальные агрегаты, сходные с почечными канальцами, и т.д.

Было найдено, что за агрегацию однородных клеток отвечают трансмембранные гликопротеиды. Непосредственно за соединение, адгезию, клеток отвечают молекулы т.н. CAM-белков (cell adhesion molecules). Некоторые из них связывают клетки друг с другом за счет межмолекулярных взаимодействий, другие образуют специальные межклеточные соединения или контакты.

Взаимодействия между адгезивными белками может быть гомофильные, когда соседние клетки связываются друг с другом с помощью однородных молекул, гетерофильные, когда в адгезии участвуют разного рода CAM на соседних клетках. Встречается межклеточное связывание через дополнительные линкерные молекулы.

CAM-белков бывает несколько классов. Это кадгерины, иммуноглобулино-подобные N-CAM (молекулы адгезии нервных клеток), селектины, интегрины.

Кадгерины представляют собой интегральные фибриллярные мембранные белки, которые образуют параллельные гомодимеры. Отдельные домены этих белков связаны с ионами Ca2+, что придает им определенную жесткость. Кадгеринов насчитывают более 40 видов. Так Е-кадгерин характерен для клеток преимплантированных эмбрионов и для эпителиальных клеток взрослых организмов. P-кадгерин характерен для клеток трофобласта, плаценты и эпидермиса, N-кадгерин располагается на поверхности нервных клеток, клеток хрусталика, на сердечных и скелетных мышцах.

Молекулы адгезии нервных клеток (N-CAM) принадлежат к суперсемейству иммуноглобулинов, они образуют связи между нервными клетками. Некоторые из N-CAM участвуют в соединении синапсов, а также при адгезии клеток иммунной системы.

Селектины также интегральные белки плазматической мембраны участвуют в адгезии эндотелиальных клеток, в связывании кровяных пластинок, лейкоцитов.

Интегрины представляют собой гетеродимеры, с  и -цепями. Интегрины в первую очередь осуществляют связь клеток с внеклеточными субстратами, но могут участвовать и в адгезии клеток друг с другом.

Узнавание чужеродных белков

Как уже указывалось, на попавшие в организм чужеродные макромолекулы (антигены), развивается сложная комплексная реакция - иммунная реакция. Суть ее заключается в том, что часть лимфоцитов вырабатывает специальные белки - антитела, которые специфически связываются с антигенами. Так, например, макрофаги своими поверхностными рецепторами узнают комплексы антиген-антитело и поглощают их (например, поглощение бактерий при фагоцитозе).

В организме всех позвоночных, кроме того, существует система рецепции чужеродных клеток или же своих, но с измененными белками плазматической мембраны, например при вирусных инфекциях или при мутациях, часто связанных с опухолевым перерождением клеток.

На поверхности всех клеток позвоночных располагаются белки, т.н. главного комплекса гистосовместимости (major histocompatibility complex - MHC). Это интегральные белки гликопротеины, гетеродимеры. Очень важно запомнить, что каждый индивидум имеет свой набор таких белков MHC. Это связано с тем, что они очень полиморфны, т.к. в каждом индивидуме имеется большое число альтериальных форм одного и того же гена (более 100), кроме того имеется 7-8 локусов, кодирующих молекулы MHC. Это приводит к тому, что каждая клетка данного организма, имея набор белков MHC, будет отличаться от клеток индивидума этого же вида. Специальная форма лимфоцитов, Т-лимфоциты, узнают MHC своего организма, но малейшие изменения в структуре MHC (например, связь с вирусом, или результат мутации в отдельных клетках), приводит к тому, что Т-лимфоциты узнают такие изменившиеся клетки и их уничтожают, но не путем фагоцитоза. Они выделяют из секреторных вакуолей специфические белки-перфорины, которые встраиваются в цитоплазматическую мембрану измененной клетки, образуют в ней трансмембранные каналы, делая плазматическую мембрану проницаемой, что и приводит к гибели измененной клетки (рис. 143, 144).

Специальные межклеточные соединения

Кроме таких сравнительно простых адгезивных (но специфических) связей (рис. 145) существует целый ряд специальных межклеточных структур, контактов или соединений, которые выполняют определенные функции. Это запирающие, заякоревающие и коммуникационные соединения (рис. 146).

Запирающее или плотное соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран (рис. 147а, 148).

На плоскостных препаратах разломов плазматической мембраны в зоне плотного контакта с помощью метода замораживания и скалывания было обнаружено, что точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин, специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул или полоски могут пересекаться так, что образуют на поверхности скола как бы решетку или сеть. Очень характерна эта структура для эпителиев, особенно железистых и кишечных. В последнем случае плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части (рис. 148). Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Оказалось, что в данном случае роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае - просвет кишечника).

Это можно продемонстрировать, используя электронноплотные контрастеры, например раствор гидроокиси лантана. Если просвет кишечника или протока какой-нибудь железы наполнить раствором гидроокиси лантана, то на срезах под электронным микроскопом зоны, где располагается это вещество, обладают высокой электронной плотностью и будут темными. Оказалось, что ни зона плотного контакта, ни межклеточные пространства, лежащие ниже его, не темнеют. Если же повредить плотные контакты (легкой ферментативной обработкой или удалением ионов Ca++), то лантан проникает и в межклеточные участки. Точно так же была доказана непроницаемость плотных контактов для гемоглобина и ферритина в канальцах почек.

Таким образом, плотные контакты являются барьерами не только для макромолекул, но и непроницаемы для жидкостей и ионов.

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Заякоривающие или сцепляющие соединения или контакты так называются из-за того, что они соединяют не только плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета (рис. 149). Для этого рода соединений характерным является наличие двух типов белков. Один из них - это трансмембранные линкерные (связующие) белки, которые участвуют или в собственно межклеточном соединении или в соединении плазмолеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани).

Второй - внутриклеточные белки, соединяющие или заякоревающие за мембранные элементы такого контакта цитоплазматические фибриллы цитоскелета.

К заякоревающим соединениям относятся межклеточные сцепляющие точечные контакты, сцепляющие ленты, фокальные контакты или бляшки сцепления - все эти контакты связываются внутри клеток с актиновыми микрофиламентами.

Другая группа заякоревающих межклеточных соединений - десмосомы и полудесмосомы - связываются с другими элементами цитоскелета, а именно с промежуточными филаментами.

Межклеточные точечные сцепляющие соединения обнаружены у многих неэпителиальных тканей, но более отчетливо описана структура специальных (адгезивных) лент в однослойных эпителиях (рис. 150). Это структура опоясывает весь периметр эпителиальной клетки, подобно тому как это происходит в случае плотного соединения. Чаще всего такой поясок или лента лежит ниже плотного соединения (см. рис. 146). В этом месте плазматические мембраны не сближены, а даже несколько раздвинуты на расстояние 25-30 нм, и между ними видна зона повышенной плотности. Это ничто иное как места взаимодействия трансмембранных гликопротеидов, которые специфически сцепляются друг с другом и обеспечивают механическое соединение мембран двух соседних клеток. Эти линкерные белки относятся к Е-кадгеринам - белкам, обеспечивающим специфическое узнавание клетками однородных мембран. Разрушение этого слоя гликопротеидов приводит к обособлению отдельных клеток и разрушению эпителиального пласта. С цитоплазматической стороны около мембраны видно скопление какого-то плотного вещества, к которому примыкает слой тонких (6-7 нм) филаментов, лежащих вдоль плазматической мембраны в виде пучка, идущего по всему периметру клетки. Тонкие филаменты относятся к актиновым фибриллам, они связываются с плазматической мембраной посредством белка катенина, образующего плотный около мембранный слой.

Функциональное значение такого ленточного соединения заключается на только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки. Считается, что кооперативное сокращение актиновых фибрилл во всех клетках эпителиального пласта может вызвать изменение его геометрии, например, сворачивание в трубку, подобно тому, что происходит при образовании нервной трубки у эмбрионов позвоночных.

Фокальные контакты или бляшки сцепления встречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином) (рис. 151). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

Десмосомы, структуры в виде бляшек или кнопок также соединяют клетки друг с другом (рис. 152, 153а). В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами - десмоглеинами, которые сцепляют клетки друг с другом. С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. В сердечной мышце клетки, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы - в принципе сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками т.н. базальной мембраны, куда входят коллаген, ламинин, протеогликаны и др.

Функциональная роль десмосом и полудесмосом сугубо механическая - они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом прочно, что позволяет эпителиальным пластам выдерживать большие механические нагрузки. Подобно этому десмосомы прочно связывают друг с другом клетки сердечной мышцы, что позволяет им выполнять огромную механическую нагрузку, оставаясь связанными в единую сокращающуюся структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты считаются коммуникационными соединениями клеток; это структуры, которые участвуют в прямой передаче химических веществ из клетки в клетку, что может играть большую физиологическую роль не только при функционировании специализированных клеток, но и обеспечивать межклеточные взаимодействия при развитии организма, при дифференцировке его клеток. Характерным для этого типа контактов является сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм (рис. 147б, 153б). Именно это обстоятельство долгое время не позволяло на ультратонких срезах отличить данный вид контакта от плотного разделительного (замыкающего) контакта. При использовании гидроокиси лантана было замечено, что некоторые плотные контакты пропускают контрастер. В этом случае лантан заполнял тонкую щель шириной около 3 нм между сближенными плазматическими мембранами соседних клеток. Это и послужило появлению термина - щелевой контакт. Дальнейший прогресс в расшифровке его строения был достигнут при использовании метода замораживания-скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размеров от 0,5 до 5 мкм) усеяны гексагонально расположенными с периодом 8-10 нм частицами 7-8 нм в диаметре, имеющими в центре канал около 2 нм шириной. Эти частицы получили название коннексонов (рис. 154). В зонах щелевого контакта может быть от 10-20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно, они состоят из шести субъединиц коннектина - белка с молекулярным весом около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат - коннексон, в центре которого располагается канал. Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки так, что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Было обнаружено, что коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками.

Функциональное значение щелевых контактов было понято при изучении гигантских клеток слюнных желез двукрылых. В такие клетки благодаря их величине легко можно вводить микроэлектроды, для того чтобы изучать электропроводимость их мембран. Оказалось, что если ввести электроды в две соседние клетки, то их плазматические мембраны проявляют низкое электрическое сопротивление, между клетками идет ток. Более того, оказалось, что при инъекции в одну клетку флуоресцирующего красителя метка быстро обнаруживается в соседних клетках. Используя разные флуорохромы, на клетках культуры ткани млекопитающих было обнаружено, что через щелевые контакты могут транспортироваться вещества с молекулярным весом не более 1-1,5 тыс. и размером не более 1,5 нм (у насекомых через щелевой контакт могут проходить вещества с молекулярным весом до 2 тыс.). Среди этих веществ были разные ионы, аминокислоты, нуклеотиды, сахара, витамины, стероиды, гормоны, цАМФ. Ни белки, ни нуклеиновые кислоты через щелевые контакты проходить не могут.

Такая способность щелевых контактов служить местом транспорта низкомолекулярных соединений используется в тех клеточных системах, где нужна быстрая передача электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Так, все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами) (рис. 147б). Это создает условие для синхронного сокращения огромного количества клеток. При росте культуры эмбриональных сердечных мышечных клеток (миокардиоциты) некоторые клетки в пласте начинают независимо друг от друга спонтанно сокращаться с разной частотой, и лишь только после образования между ними щелевых контактов они начинают биться синхронно как единый сокращающийся пласт клеток. Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Щелевые контакты могут служить целям метаболической кооперации между клетками, обмениваясь различными молекулами, гормонами, цАМФ или метаболитами. Примером этого может служить совместное культивирование мутантных по тимидин-киназе клеток с нормальными: при возникновении щелевых контактов между этими типами клеток, мутантные клетки через щелевые контакты получали от нормальных клеток тимидин-трифосфат и могли участвовать в синтезе ДНК.

У ранних эмбрионов позвоночных, начиная с 8-клеточной стадии большинство клеток связано друг с другом щелевыми контактами. По мере дифференцировки эмбриона щелевые контакты между всеми клетками исчезают и остаются только между группами специализирующихся клеток. Например, при образовании нервной трубки связь клеток этой структуры с остальным эпидермисом прерывается, разобщается.

Целостность и функционирование щелевых контактов сильно зависит от уровня ионов Ca2+ внутри клетки. В норме концентрация кальция в цитоплазме очень низка. Если Ca2+ инъецировать в одну из клеток пласта культуры тканей, то в соседних клетках увеличения уровня Ca2+ в цитоплазме не происходит; клетки как бы разобщаются с соседями, перестают проводить электрический ток и красители. Через некоторое время, после того как введенный кальций будет аккумулирован митохондриями, структура и функции щелевых контактов восстанавливаются. Такое свойство очень важно для поддержания целостности и работы всего слоя клеток, так как повреждение одной из них не передается на соседний через щелевые контакты, которые перестают работать как межклеточные диффузионные каналы.

Синаптический контакт (синапсы). Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом - рецептором или эффектором (например, нервно-мышечное окончание). Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому (рис. 155). В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса. Синапсы образуются на отростках нервных клеток - это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс - это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством - синаптической щелью шириной около 20-30 нм. Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, - постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки (рис. 156, 157). Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка (см. ниже). У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон.

studfiles.net

Глава 13. Плазматическая мембрана

Плазматическая мембрана, или плазмолемма, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, ограничивающая клетку снаружи, что обусловливает ее непосредственную связь с внеклеточной средой, а следовательно, со всеми веществами и стимулами, воздействующими на клетку. Поэтому плазматической мембране принадлежит роль быть барьером, преградой между сложно организованным внутриклеточным содержимым и внешней средой. В этом случае плазмолемма выполняет не только роль механического барьера, но, главное, ограничивает свободный поток низко- и высокомолекулярных веществ в обе стороны через мембрану. Более того, плазмолемма выступает как структура “узнающая”, рецептирующая, различные химические вещества и регулирующая избирательно транспорт этих веществ в клетку и из нее. Другими словами, плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ и выполняет роль первичного клеточного анализатора. В этом отношении плазмолемму можно считать клеточным органоидом, входящим в вакуолярную систему клетки. Как и другие мембраны этой системы (мембраны лизосом, эндосом, аппарата Гольджи и др.) она возникает и обновляется за счет синтетической активности эндоплазматического ретикулума и имеет сходную композицию. Как ни странно, но плазматическую мембрану можно уподобить мембране внутриклеточной вакуоли, но вывернутой наизнанку: она не окружена гиалоплазмой, а окружает ее.

Барьерно-транспортная роль плазмолеммы

Окружая клетку со всех сторон, плазматическая мембрана выполняет роль механического барьера. Для того, чтобы проколоть ее с помощью микроигл или микропипеток, требуется довольно большое усилие. При давлении на нее микроиглы она сначала сильно прогибается, а лишь затем прорывается. Искусственные липидные мембраны менее устойчивы. Эта механическая устойчивость плазматической мембраны может определяться дополнительными компонентами, такими как гликокаликс и кортикальный слой цитоплазмы (рис. 127).

Гликокаликс представляет собой внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов. Эти цепочки содержат такие углеводы как манноза, глюкоза, N-ацетилглюкозамин, сиаловая кислота и др. Такие углеводные гетерополимеры образуют ветвящиеся цепочки, между которыми могут располагаться выделенные из клетки гликолипиды и протеогликаны. Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что значительно снижает в этой зоне скорость диффузии различных веществ. Здесь же могут “застревать” выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров (внеклеточное пищеварение) до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.

В электронном микроскопе, особенно при специальных методах контрастирования полисахаридов, гликокаликс имеет вид рыхлого волокнистого слоя, толщиной 3-4 нм, покрывающего всю поверхность клетки. Особенно хорошо гликокаликс выражен в щеточной каемке клеток всасывающего эпителия кишечника (энтероциты), однако он обнаружен практически у всех животных клеток, но степень его выраженности различна (рис. 128).

Механическая устойчивость плазматической мембраны, кроме того, обеспечивается структурой примыкающего к ней со стороны цитоплазмы кортикального слоя и внутриклеточных фибриллярных структур. Кортикальный (от слова - cortex -кора, кожица) слой цитоплазмы, лежащий в тесном контакте с липопротеидной наружной мембраной, имеет ряд особенностей. Здесь в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки, но в большом количестве встречаются фибриллярные элементы цитоплазмы - микрофиламенты и часто микротрубочки. Основным фибриллярным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы (подробнее о скелетно-двигательной системе клеток см. ниже). Роль этих связанных с актином белков очень важна, так как она объясняет их участие в связи, в “заякоревании” интегральных белков плазматической мембраны.

У многих простейших, особенно у инфузорий, плазматическая мембрана принимает участие в образовании пелликулы, жесткого слоя, часто определяющего форму клетки. К плазматической мембране здесь изнутри могут примыкать мембранные мешочки; в этом случае у поверхности клеток имеются три мембранных слоя: собственно плазматическая мембрана и две мембраны пелликулярных альвеол. У инфузории туфельки пелликула образует утолщения, располагающиеся в виде шестиугольников, в центре которых выходят реснички (рис. 129). Жесткость пелликулярных образований может быть связана также с элементами цитоплазмы, подстилающими плазматическую мембрану, с кортикальным слоем. Так, в гребнях пелликулы эвглены вблизи мембраны обнаруживаются кроме мембранных вакуолей параллельные пучки микротрубочек и микрофиламентов. Такая фибриллярная периферическая арматура вместе со складчатой многослойной мембранной периферией создает жесткую структуру пелликулы.

Барьерная роль плазмолеммы заключается также в ограничении свободной диффузии веществ. Модельные опыты на искусственных липидных мембранах показали, что они проницаемы для воды, газов, малых неполярных молекул жирорастворимых веществ, но совершенно не проницаемы для заряженных молекул (ионы) и для крупных незаряженных (сахара) (рис. 130).

Естественные мембраны так же ограничивают скорость проникновения низкомолекулярных соединений в клетку.

Трансмембранныый перенос ионов и низкомоекулярных соединений

Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы (примерно в 104 раз медленнее). Поэтому если клетку, например эритроцит, поместить в среду, где концентрация солей будет ниже, чем в клетке (гипотония), то вода снаружи устремится внутрь клетки, что приведет к увеличению объема клетки и к разрыву плазматической мембраны (“гипотонический шок”). Наоборот, при помещении эритроцита в растворы солей более высокой концентрации, чем в клетке, произойдет выход воды из клетки во внешнюю среду. Клетка при этом сморщится, уменьшится в объеме.

Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10-4 см/с, что в 100 000раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. Было заключено, что в клеточной мембране, в ее липопротеидном слое существуют специальные “поры” для проникновения воды и ионов. Число их не так велико: суммарная площадь при величине отдельной “поры” около 0,3-0,8 нм должна составлять лишь 0,06% всей клеточной поверхности.

В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-).

Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+.

Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые растворенные молекулы проходят через мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, а другая часть может закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки - переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).

Наличие таких белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных. На табл. 14 показаны концентрации ионов внутри и снаружи клетки.

Таблица 14.

Ион

Внутриклеточная концентрация, мМ

Внеклеточная концентрация, мМ

Na+

5-15

145

K+

140

5

Mg2+

30

1-2

*Ca2+

1-2

2,5-5

Cl-

4

110

*Концентрация Ca2+ в свободном состоянии в цитозоле эукариотических клеток составляет 10-7 М, а снаружи 10-3 М.

Как видно, в этом случае, суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинаковы (150 мМ), изотонична. Но оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.

Такая постоянная работа пермеаз и насосов создает в клетке постоянную концентрацию ионов и низкомолекулярных веществ, создает т.н. гомеостаз, постоянство концентраций осмотически активных веществ. Надо отметить, что примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.

В сочетании с активным транспортом ионов через плазматическую мембрану происходит транспорт различных сахаров, нуклеотидов и аминокислот.

Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)-насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+ и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода.

Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.

Везикулярный перенос: эндоцитоз и экзоцитоз

Макромолекулы такие как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и другие сквозь клеточные мембраны не проходят, в противовес тому как транспортируются ионы и мономеры. Транспорт микромолекул, их комплексов, частиц внутрь клетки и из нее происходит совершенно иным путем - посредством везикулярного переноса. Этот термин означает, что различные макромолекулы, биополимеры, или их комплексы, не могут попадать в клетку сквозь плазматическую мембрану. И не только сквозь нее: любые клеточные мембраны не способны к трансмембранному переносу биополимеров, за исключением мембран, имеющих особые белковые комплексные переносчики - порины (мембраны митохондрий, пластид, пероксисом). В клетку же или из одного мембранного компартмента в другой макромолекулы попадают заключенными внутри вакуолей или везикул. Такой везикулярный перенос можно разделить на два вида: экзоцитоз - вынос из клетки макромолекулярных продуктов, и эндоцитоз - поглощение клеткой макромолекул (рис. 133).

При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключает его в мембранную вакуоль, возникшую за счет впячивания плазматической мембраны. В такую первичную вакуоль, или в эндосому, могут попадать любые биополимеры, макромолекулярные комплексы, части клеток или даже целые клетки, где затем и распадаются, деполимеризуются до мономеров, которые путем трансмембранного переноса попадают в гиалоплазму. Основное биологическое значение эндоцитоза - это получение строительных блоков за счет внутриклеточного переваривания, которое осуществляется на втором этапе эндоцитоза после слияния первичной эндосомы с лизосомой, вакуолью, содержащей набор гидролитических ферментов (см. ниже).

Эндоцитоз формально разделяют на пиноцитоз и фагоцитоз (рис. 134). Фагоцитоз - захват и поглощение клеткой крупных частиц (иногда даже клеток или их частей) - был впервые описан И,И, Мечниковым. Фагоцитоз, способность захватывать клеткой крупные частицы, встречается среди клеток животных, как одноклеточных (например, амебы, некоторые хищные инфузории), так и для специализированных клеток многоклеточных животных. Специализированные клетки, фагоциты характерны как для беспозвоночных животных (амебоциты крови или полостной жидкости), так и для позвоночных (нейтрофилы и макрофаги). Пиноцитоз вначале определялся как поглощение клеткой воды или водных растворов разных веществ. Сейчас известно, что как фагоцитоз так и пиноцитоз протекают очень сходно, и поэтому употребление этих терминов может отражать лишь различия в объемах, массе поглощенных веществ. Общее для этих процессов то, что поглощенные вещества на поверхности плазматической мембраны окружаются мембраной в виде вакуоли - эндосомы, которая перемещается внутрь клетки.

Эндоцитоз, включая пиноцитоз и фагоцитоз, может быть неспецифическим или конститутивным, постоянным и специфическим, опосредуемым рецепторами (рецепторным). Неспецифический эндоцитоз (пиноцитоз и фагоцитоз), так называется потому, что он протекает как бы автоматически и часто может приводить к захвату и поглощению совершенно чуждых или безразличных для клетки веществ, например, частичек сажи или красителей.

Неспецифический эндоцитоз часто сопровождается первоначальной сорбцией захватывающего материала гликокаликсом плазмолеммы. Гликокаликс из-за кислых групп своих полисахаридов имеет отрицательный заряд и хорошо связывается с различными положительно заряженными группами белков. При таком адсорбционном неспецифическом эндоцитозе поглощаются макромолекулы и мелкие частицы (кислые белки, ферритин, антитела, вирионы, коллоидные частицы). Жидкофазный пиноцитоз приводит к поглощению вместе с жидкой средой растворимых молекул, которые не связываются с плазмолеммой.

На следующем этапе происходит изменение морфологии клеточной поверхности: это или возникновение небольших впячиваний плазматической мембраны, инвагинации, или же это появление на поверхности клетки выростов, складок или “оборок” (рафл - по-английски), которые как бы захлестываются, складываются, отделяя небольшие объемы жидкой среды (рис. 135, 136). Первый тип возникновения пиноцитозного пузырька, пиносомы, характерен для клеток кишечного эпителия, эндотелия, для амеб, второй - для фагоцитов и фибробластов. Эти процессы зависят от поступления энергии: ингибиторы дыхания блокируют эти процессы.

Вслед за такой перестройкой поверхности следует и процесс слипания и слияния контактирующих мембран, который приводит к образованию пеницитозного пузырька (пиносома), отрывающегося от клеточной поверхности и уходящего вглубь цитоплазмы. Как неспецифический так и рецепторный эндоцитоз, приводящий к отщеплению мембранных пузырьков, происходит в специализированных участках плазматической мембраны. Это так называемые окаймленные ямки. Они называются так потому, что со стороны цитоплазмы плазматическая мембрана покрыта, одета, тонким (около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания, ямки (рис. 137). Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина, ассоциированного с рядом дополнительных белков. Три молекулы клатрина вместе с тремя молекулами низкомолекулярного белка образуют структуру трискелиона, напоминающего трехлучевую свастику (рис. 138). Клатриновый трискелионы на внутренней поверхности ямок плазматической мембраны образуют рыхлую сеть, состоящую из пяти- и шестиугольников, в целом напоминающую корзинку. Клатриновый слой одевает весь периметр отделяющихся первичных эндоцитозных вакуолей, окаймленных пузырьков.

Клатрин относится к одному из видов т.н. “одевающих” белков (COP - coated proteins). Эти белки связываются с интегральными белками-рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы, первичного эндосомного пузырька - “окаймленного” пузырька. в отделении первичной эндосомы участвуют также белки - динамины, которые полимеризуются вокруг шейки отделяющегося пузырька (рис. 139).

После того как окаймленный пузырек отделится о плазмолеммы и начнет переноситься вглубь цитоплазмы клатриновый слой распадается, диссоциирует, мембрана эндосом (пиносом) приобретает обычный вид. После потери клатринового слоя эндосомы начинают сливаться друг с другом.

Было найдено, что мембраны окаймленных ямок содержат сравнительно мало холестерина, что может определять снижение жесткости мембран и способствовать образованию пузырьков. Биологический смысл появления клатриновой “шубы” по периферии пузырьков, возможно, заключается в том, что он обеспечивает сцепление окаймленных пузырьков с элементами цитоскелета и последующий их транспорт в клетке, и препятствует их слиянию друг с другом.

Интенсивность жидкофазного неспецифического пиноцитоза может быть очень высокой. Так клетка эпителия тонкого кишечника образует до 1000 пиносом в секунду, а макрофаги образуют около 125 пиносом в минуту. Размер пиносом невелик, их нижний предел составляет 60-130 нм, но обилие их приводит к тому, что при эндоцитозе плазмолемма быстро замещается, как бы “тратится” на образование множества мелких вакуолей. Так у макрофагов вся плазматическая мембрана заменяется за 30 минут, у фибробластов - за два часа.

Дальнейшая судьба эндосом может быть различной, часть из них может возвращаться к поверхности клетки и сливаться с ней, но большая часть вступает в процесс внутриклеточного пищеварения. Первичные эндосомы содержат в основном захваченные в жидкой среде чужеродные молекулы и не содержат гидролитических ферментов. эндосомы могут сливаться друг с другом при этом увеличиваясь в размере. Они затем сливаются с первичными лизосомами (см. ниже), которые вводят в полость эндосом ферменты, гидролизующие различные биополимеры. Действие этих лизосомных гидролаз и вызывает внутриклеточное пищеварение - распад полимеров до мономеров.

Как уже указывалось, в ходе фагоцитоза и пиноцитоза клетки теряют большую площадь плазмолеммы (см. макрофаги), которая однако довольно быстро восстанавливается при рециклизации мембран, за счет возвращения вакуолей и их встраивания в плазмолемму. Это происходит вследствие того, что от эндосом или вакуолей, так же как и от лизосом могут отделяться небольшие пузырьки, которые вновь сливаются с плазмолеммой. При такой рециклизации происходит как бы “челночный” перенос мембран: плазмолемма - пиносома - вакуоль - плазмолемма. Это ведет к восстановлению исходной площади плазматической мембраны. Найдено, что при таком возврате, рециклизации мембран, в оставшейся эндосоме удерживается весь поглощенный материал.

Специфический или опосредуемый рецепторами эндоцитоз имеет ряд отличий от неспецифического. Главное в том, что поглощаются молекулы, для которых на плазматической мембране есть специфические рецепторы, ассоциирующиеся только с данным типом молекул. Часто такие молекулы, связывающиеся с белками-рецепторами на поверхности клеток, называют лигандами.

Впервые опосредуемый рецепторами эндоцитоз был описан при накоплении белков в ооцитах птиц. Белки желточных гранул, вителлогенины, синтезируются в различных тканях, но затем с током крови попадают в яичники, где связываются со специальными мембранными рецепторами ооцитов и затем с помощью эндоцитоза попадают внутрь клетки, где и происходит отложение желточных гранул.

Другой пример избирательного эндоцитоза представляет собой транспорт в клетку холестерина. Этот липид синтезируется в печени и в комплексе с другими фосфолипидами и белковой молекулой образует т.н. липопротеид низкой плотности (ЛНП), который секретируется клетками печени и кровеносной системой разносится по всему телу (рис. 140). Специальные рецепторы плазматической мембраны, диффузно расположенные на поверхности различных клеток, узнают белковый компонент ЛНП, и образуют специфический комплекс рецептор-лиганд. Вслед за этим такой комплекс перемещается в зону окаймленных ямок и интернализуется - окружается мембраной и погружается вглубь цитоплазмы. Показано, что мутантные рецепторы могут связывать ЛНП, но не аккумулируются в зоне окаймленные ямок. Кроме рецепторов к ЛНП обнаружено более двух десятков других, участвующих в рецепторном эндоцитозе различных веществ, все они используют один и тот же путь интернализации через окаймленные ямки. Вероятно, их роль заключается в накапливании рецепторов: одна и та же окаймленная ямка может собрать около 1000 рецепторов разного класса. Однако у фибробластов кластеры рецепторов ЛНП расположены в зоне окаймленных ямок даже в отсутствие лиганда в среде.

Дальнейшая судьба поглощенной частицы ЛНП заключается в том, что она подвергается распаду в составе вторичной лизосомы. После погружения в цитоплазму окаймленного пузырька, нагруженного ЛНП, происходит быстрая потеря клатринового слоя, мембранные пузырьки начинают сливаться друг с другом, образуя эндосому - вакуоль, содержащую поглощенные ЛНП-частицы, связанные еще с рецепторами на поверхности мембраны. Затем происходит диссоциация комплекса лиганд-рецептор, от эндосомы отщепляются мелкие вакуоли, мембраны которых содержат свободные рецепторы. Эти пузырьки рециклируются, включаются в плазматическую мембрану, и тем самым, рецепторы возвращаются на поверхность клетки. Судьба же ЛНП состоит в том, что после слияния с лизосомами, они гидролизуются до свободного холестерина, который может включаться в клеточные мембраны.

Эндосомы характеризуются более низким значением рН (рН 4-5), более кислой средой, чем другие клеточные вакуоли. Это связано с наличием в их мембранах белков протонного насоса, закачивающих ионы водорода с одновременной затратой АТФ (Н+-зависимая АТФаза). Кислая среда внутри эндосом играет решающую роль в диссоциации рецепторов и лигандов. Кроме того, кислая среда является оптимальной для активации гидролитических ферментов в составе лизосом, которые активируются при слиянии лизосом с эндосомами и приводят к образованию эндолизосомы, в которой и происходит расщепление поглощенных биополимерв.

В некоторых случаях судьба диссоциированных лигандов не связана с лизосомным гидролизом. Так в некоторых клетках после связывания рецепторов плазмолеммы с определенными белками, покрытые клатрином вакуоли погружаются в цитоплазму и переносятся к другой области клетки, где сливаются снова с плазматической мембраной, а связанные белки диссоциируют от рецепторов. Так осуществляется перенос, трансцитозис, некоторых белков через стенку эндотелиальной клетки из плазмы крови во межклеточную среду (рис. 141). Другой пример трансцитоза - перенос антител. Так у млекопитающих антитела матери, могут передаваться детенышу через молоко. В этом случае комплекс рецептор-антитело остается в эндосоме без изменений.

Фагоцитоз

Как уже говорилось, фагоцитоз является вариантом эндоцитоза и связан с поглощением клеткой крупных агрегатов макромолекул вплоть до живых или мертвых клеток. Так же как и пиноцитоз, фагоцитоз может быть неспецифическим (например, поглощение фибробластами или макрофагами частичек коллоидного золота или полимера декстрана) и специфическим, опосредуемым рецепторами на поверхности плазматической мембраны фагоцитирующих клеток. При фагоцитозе происходит образование больших эндоцитозных вакуолей - фагосом, которые затем сливаясь с лизосомами образуют фаголизосомы.

На поверхности клеток, способных к фагоцитозу (у млекопитающих это нейтрофилы и макрофаги) существует набор рецепторов, взаимодействующих с белками-лигандами. Так при бактериальных инфекциях антитела к белкам бактерий связываются с поверхностью бактериальных клеток, образуя слой, в котором Fc-области антител смотрят наружу. Этот слой узнается специфическими рецепторами на поверхности макрофагов и нейтрофилов, и в местах их связывания начинается поглощение бактерии путем обволакивания ее плазматической мембраной клетки (рис. 142).

Экзоцитоз

Плазматическая мембрана принимает участие в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу (см. рис. 133).

В случае экзоцитоза, внутриклеточные продукты, заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазматической мембране. В местах их контактов плазматическая мембрана и мембрана вакуоли сливаются, и пузырек опустошается в окружающую среду. С помощью экзоцитоза происходит процесс рециклизации мембран, участвующих в эндоцитозе.

С экзоцитозом связано выделение синтезированных в клетке разнообразных веществ. Секретирующие, выделяющие вещества во внешнюю среду, клетки могут вырабатывать и выбрасывать низкомолекулярные соединения (ацетилхолин, биогенные амины и др.), а также в большинстве случаев макромолекулы (пептиды, белки, липопротеиды, пептидогликаны и др.). Экзоцитоз или секреция в большинстве случаев происходит в ответ на внешний сигнал (нервный импульс, гормоны, медиаторы и др.). Хотя в ряде случаев экзоцитоз происходит постоянно (секреция фибронектина и коллагена фибробластами). Сходным образом из цитоплазмы растительных клеток выводятся некоторые полисахариды (гемицеллюлозы), участвующие в образовании клеточных стенок.

Большинство секретируемых веществ используется другими клетками многоклеточных организмов (секреция молока, пищеварительных соков, гормонов и др.). Но часто клетки секретируют вещества и для собственных нужд. Так например рост плазматической мембраны осуществляется за счет встраивания участков мембраны в составе экзоцитозных вакуолей, часть элементов гликокаликса выделяется клеткой в виде гликопротеидных молекул и т.д.

Выделенные из клеток путем экзоцитоза гидролитические ферменты могут сорбироваться в слое гликокаликса и обеспечивать примембранное внеклеточное расщепление различных биополимеров и органических молекул. Огромное значение примембранное неклеточное пищеварение имеет для животных. Было обнаружено, что в кишечном эпителии млекопитающих в зоне так называемой щеточной каемки всасывающего эпителия, особенно богатой гликокаликсом, обнаруживается огромное количество разнообразных ферментов. Часть этих же ферментов имеет панкреатическое происхождение (амилаза, липазы, различные протеиназы и др.), а часть выделяется собственно клетками эпителия (экзогидролазы, расщепляющие преимущественно олигомеры и димеры с образованием транспортируемых продуктов).

Рецепторная роль плазмолеммы

Мы уже встречались с этой особенностью плазматической мембраны при ознакомлении с ее транспортными функциями. Белки-переносчики и насосы являются кроме всего также рецепторами, узнающими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, поступающих в клетки.

В качестве таких рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные участки к отдельным веществам могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.

Роль многих клеточных рецепторов заключается не только в связывании специфических веществ или способности реагировать на физические факторы, но и в передаче межклеточных сигналов с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Было найдено, что эти гормоны связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы, после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, - аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером - активатором ферментов - киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глюкагона, вырабатываемого А-клетками островков Лангерганса, гормон связывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкиназу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном - он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.

В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ, активирующий или ингибирующий внутриклеточный фермент или группу ферментов. Таким образом, команда, сигнал от плазматической мембраны передается внутрь клетки. Эффективность этой аденилатциклазной системы очень высока. Так взаимодействие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.

Существует и другой путь, при котором используются другие вторичные мессенджеры, - это т.н. фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нервные медиаторы и белки) активируется фермент фосфолипиза C, которая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу C, которая вызывает активацию каскада киназ, что приводит к определенным клеточным реакциям, а с другой - приводит к освобождению ионов кальция, который регулирует целый ряд клеточных процессов.

Другой пример рецепторной активности - рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, вызывает импульсное поступление Na+ в клетку (деполяризация мембраны), открывая сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо у высших животных уничтожаются в результате иммунологических реакций (см. ниже).

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматической мембране или у ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующими с квантами света. В плазматической мембране светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.

Межклеточное узнавание

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран. При таком межклеточном взаимодействии клеток между плазматическими мембранами всегда остается щель шириной около 20 нм, заполненная гликокаликсом. Обработка ткани ферментами, нарушающими целостность гликокаликса (муказы, действующие гидролитически на муцины, мукополисахариды) или повреждающие плазматическую мембрану (протеазы), приводит к обособлению клеток друг от друга, к их диссоциации. Однако если удалить фактор диссоциации, то клетки могут снова собираться, реагрегировать. Так можно диссоциировать клетки разных по окраске губок, оранжевых и желтых. Оказалось, что в смеси этих клеток образуются два типа агрегатов: состоящие только из желтых и только из оранжевых клеток. При этом смешанные клеточные суспензии самоорганизуются, восстанавливая исходную многоклеточную структуру. Сходные результаты были получены с суспензиями разделенных клеток эмбрионов амфибий; в этом случае происходит избирательное пространственное обособление клеток эктодермы от энтодермы и от мезенхимы. Более того, если для реагрегации используются ткани поздних стадий развития зародышей, то в пробирке самостоятельно собираются различные клеточные ансамбли, обладающие тканевой и органной специфичностью, образуются эпителиальные агрегаты, сходные с почечными канальцами, и т.д.

Было найдено, что за агрегацию однородных клеток отвечают трансмембранные гликопротеиды. Непосредственно за соединение, адгезию, клеток отвечают молекулы т.н. CAM-белков (cell adhesion molecules). Некоторые из них связывают клетки друг с другом за счет межмолекулярных взаимодействий, другие образуют специальные межклеточные соединения или контакты.

Взаимодействия между адгезивными белками может быть гомофильные, когда соседние клетки связываются друг с другом с помощью однородных молекул, гетерофильные, когда в адгезии участвуют разного рода CAM на соседних клетках. Встречается межклеточное связывание через дополнительные линкерные молекулы.

CAM-белков бывает несколько классов. Это кадгерины, иммуноглобулино-подобные N-CAM (молекулы адгезии нервных клеток), селектины, интегрины.

Кадгерины представляют собой интегральные фибриллярные мембранные белки, которые образуют параллельные гомодимеры. Отдельные домены этих белков связаны с ионами Ca2+, что придает им определенную жесткость. Кадгеринов насчитывают более 40 видов. Так Е-кадгерин характерен для клеток преимплантированных эмбрионов и для эпителиальных клеток взрослых организмов. P-кадгерин характерен для клеток трофобласта, плаценты и эпидермиса, N-кадгерин располагается на поверхности нервных клеток, клеток хрусталика, на сердечных и скелетных мышцах.

Молекулы адгезии нервных клеток (N-CAM) принадлежат к суперсемейству иммуноглобулинов, они образуют связи между нервными клетками. Некоторые из N-CAM участвуют в соединении синапсов, а также при адгезии клеток иммунной системы.

Селектины также интегральные белки плазматической мембраны участвуют в адгезии эндотелиальных клеток, в связывании кровяных пластинок, лейкоцитов.

Интегрины представляют собой гетеродимеры, с  и -цепями. Интегрины в первую очередь осуществляют связь клеток с внеклеточными субстратами, но могут участвовать и в адгезии клеток друг с другом.

Узнавание чужеродных белков

Как уже указывалось, на попавшие в организм чужеродные макромолекулы (антигены), развивается сложная комплексная реакция - иммунная реакция. Суть ее заключается в том, что часть лимфоцитов вырабатывает специальные белки - антитела, которые специфически связываются с антигенами. Так, например, макрофаги своими поверхностными рецепторами узнают комплексы антиген-антитело и поглощают их (например, поглощение бактерий при фагоцитозе).

В организме всех позвоночных, кроме того, существует система рецепции чужеродных клеток или же своих, но с измененными белками плазматической мембраны, например при вирусных инфекциях или при мутациях, часто связанных с опухолевым перерождением клеток.

На поверхности всех клеток позвоночных располагаются белки, т.н. главного комплекса гистосовместимости (major histocompatibility complex - MHC). Это интегральные белки гликопротеины, гетеродимеры. Очень важно запомнить, что каждый индивидум имеет свой набор таких белков MHC. Это связано с тем, что они очень полиморфны, т.к. в каждом индивидуме имеется большое число альтериальных форм одного и того же гена (более 100), кроме того имеется 7-8 локусов, кодирующих молекулы MHC. Это приводит к тому, что каждая клетка данного организма, имея набор белков MHC, будет отличаться от клеток индивидума этого же вида. Специальная форма лимфоцитов, Т-лимфоциты, узнают MHC своего организма, но малейшие изменения в структуре MHC (например, связь с вирусом, или результат мутации в отдельных клетках), приводит к тому, что Т-лимфоциты узнают такие изменившиеся клетки и их уничтожают, но не путем фагоцитоза. Они выделяют из секреторных вакуолей специфические белки-перфорины, которые встраиваются в цитоплазматическую мембрану измененной клетки, образуют в ней трансмембранные каналы, делая плазматическую мембрану проницаемой, что и приводит к гибели измененной клетки (рис. 143, 144).

Специальные межклеточные соединения

Кроме таких сравнительно простых адгезивных (но специфических) связей (рис. 145) существует целый ряд специальных межклеточных структур, контактов или соединений, которые выполняют определенные функции. Это запирающие, заякоревающие и коммуникационные соединения (рис. 146).

Запирающее или плотное соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран (рис. 147а, 148).

На плоскостных препаратах разломов плазматической мембраны в зоне плотного контакта с помощью метода замораживания и скалывания было обнаружено, что точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин, специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул или полоски могут пересекаться так, что образуют на поверхности скола как бы решетку или сеть. Очень характерна эта структура для эпителиев, особенно железистых и кишечных. В последнем случае плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части (рис. 148). Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Оказалось, что в данном случае роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае - просвет кишечника).

Это можно продемонстрировать, используя электронноплотные контрастеры, например раствор гидроокиси лантана. Если просвет кишечника или протока какой-нибудь железы наполнить раствором гидроокиси лантана, то на срезах под электронным микроскопом зоны, где располагается это вещество, обладают высокой электронной плотностью и будут темными. Оказалось, что ни зона плотного контакта, ни межклеточные пространства, лежащие ниже его, не темнеют. Если же повредить плотные контакты (легкой ферментативной обработкой или удалением ионов Ca++), то лантан проникает и в межклеточные участки. Точно так же была доказана непроницаемость плотных контактов для гемоглобина и ферритина в канальцах почек.

Таким образом, плотные контакты являются барьерами не только для макромолекул, но и непроницаемы для жидкостей и ионов.

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Заякоривающие или сцепляющие соединения или контакты так называются из-за того, что они соединяют не только плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета (рис. 149). Для этого рода соединений характерным является наличие двух типов белков. Один из них - это трансмембранные линкерные (связующие) белки, которые участвуют или в собственно межклеточном соединении или в соединении плазмолеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани).

Второй - внутриклеточные белки, соединяющие или заякоревающие за мембранные элементы такого контакта цитоплазматические фибриллы цитоскелета.

К заякоревающим соединениям относятся межклеточные сцепляющие точечные контакты, сцепляющие ленты, фокальные контакты или бляшки сцепления - все эти контакты связываются внутри клеток с актиновыми микрофиламентами.

Другая группа заякоревающих межклеточных соединений - десмосомы и полудесмосомы - связываются с другими элементами цитоскелета, а именно с промежуточными филаментами.

Межклеточные точечные сцепляющие соединения обнаружены у многих неэпителиальных тканей, но более отчетливо описана структура специальных (адгезивных) лент в однослойных эпителиях (рис. 150). Это структура опоясывает весь периметр эпителиальной клетки, подобно тому как это происходит в случае плотного соединения. Чаще всего такой поясок или лента лежит ниже плотного соединения (см. рис. 146). В этом месте плазматические мембраны не сближены, а даже несколько раздвинуты на расстояние 25-30 нм, и между ними видна зона повышенной плотности. Это ничто иное как места взаимодействия трансмембранных гликопротеидов, которые специфически сцепляются друг с другом и обеспечивают механическое соединение мембран двух соседних клеток. Эти линкерные белки относятся к Е-кадгеринам - белкам, обеспечивающим специфическое узнавание клетками однородных мембран. Разрушение этого слоя гликопротеидов приводит к обособлению отдельных клеток и разрушению эпителиального пласта. С цитоплазматической стороны около мембраны видно скопление какого-то плотного вещества, к которому примыкает слой тонких (6-7 нм) филаментов, лежащих вдоль плазматической мембраны в виде пучка, идущего по всему периметру клетки. Тонкие филаменты относятся к актиновым фибриллам, они связываются с плазматической мембраной посредством белка катенина, образующего плотный около мембранный слой.

Функциональное значение такого ленточного соединения заключается на только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки. Считается, что кооперативное сокращение актиновых фибрилл во всех клетках эпителиального пласта может вызвать изменение его геометрии, например, сворачивание в трубку, подобно тому, что происходит при образовании нервной трубки у эмбрионов позвоночных.

Фокальные контакты или бляшки сцепления встречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде небольших участков - бляшек на плазмолемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например с фибронектином) (рис. 151). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и создании механизма, позволяющего клеткам перемещаться.

Десмосомы, структуры в виде бляшек или кнопок также соединяют клетки друг с другом (рис. 152, 153а). В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами - десмоглеинами, которые сцепляют клетки друг с другом. С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. В сердечной мышце клетки, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы - в принципе сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками т.н. базальной мембраны, куда входят коллаген, ламинин, протеогликаны и др.

Функциональная роль десмосом и полудесмосом сугубо механическая - они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом прочно, что позволяет эпителиальным пластам выдерживать большие механические нагрузки. Подобно этому десмосомы прочно связывают друг с другом клетки сердечной мышцы, что позволяет им выполнять огромную механическую нагрузку, оставаясь связанными в единую сокращающуюся структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты считаются коммуникационными соединениями клеток; это структуры, которые участвуют в прямой передаче химических веществ из клетки в клетку, что может играть большую физиологическую роль не только при функционировании специализированных клеток, но и обеспечивать межклеточные взаимодействия при развитии организма, при дифференцировке его клеток. Характерным для этого типа контактов является сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм (рис. 147б, 153б). Именно это обстоятельство долгое время не позволяло на ультратонких срезах отличить данный вид контакта от плотного разделительного (замыкающего) контакта. При использовании гидроокиси лантана было замечено, что некоторые плотные контакты пропускают контрастер. В этом случае лантан заполнял тонкую щель шириной около 3 нм между сближенными плазматическими мембранами соседних клеток. Это и послужило появлению термина - щелевой контакт. Дальнейший прогресс в расшифровке его строения был достигнут при использовании метода замораживания-скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размеров от 0,5 до 5 мкм) усеяны гексагонально расположенными с периодом 8-10 нм частицами 7-8 нм в диаметре, имеющими в центре канал около 2 нм шириной. Эти частицы получили название коннексонов (рис. 154). В зонах щелевого контакта может быть от 10-20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно, они состоят из шести субъединиц коннектина - белка с молекулярным весом около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат - коннексон, в центре которого располагается канал. Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки так, что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Было обнаружено, что коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками.

Функциональное значение щелевых контактов было понято при изучении гигантских клеток слюнных желез двукрылых. В такие клетки благодаря их величине легко можно вводить микроэлектроды, для того чтобы изучать электропроводимость их мембран. Оказалось, что если ввести электроды в две соседние клетки, то их плазматические мембраны проявляют низкое электрическое сопротивление, между клетками идет ток. Более того, оказалось, что при инъекции в одну клетку флуоресцирующего красителя метка быстро обнаруживается в соседних клетках. Используя разные флуорохромы, на клетках культуры ткани млекопитающих было обнаружено, что через щелевые контакты могут транспортироваться вещества с молекулярным весом не более 1-1,5 тыс. и размером не более 1,5 нм (у насекомых через щелевой контакт могут проходить вещества с молекулярным весом до 2 тыс.). Среди этих веществ были разные ионы, аминокислоты, нуклеотиды, сахара, витамины, стероиды, гормоны, цАМФ. Ни белки, ни нуклеиновые кислоты через щелевые контакты проходить не могут.

Такая способность щелевых контактов служить местом транспорта низкомолекулярных соединений используется в тех клеточных системах, где нужна быстрая передача электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Так, все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами) (рис. 147б). Это создает условие для синхронного сокращения огромного количества клеток. При росте культуры эмбриональных сердечных мышечных клеток (миокардиоциты) некоторые клетки в пласте начинают независимо друг от друга спонтанно сокращаться с разной частотой, и лишь только после образования между ними щелевых контактов они начинают биться синхронно как единый сокращающийся пласт клеток. Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Щелевые контакты могут служить целям метаболической кооперации между клетками, обмениваясь различными молекулами, гормонами, цАМФ или метаболитами. Примером этого может служить совместное культивирование мутантных по тимидин-киназе клеток с нормальными: при возникновении щелевых контактов между этими типами клеток, мутантные клетки через щелевые контакты получали от нормальных клеток тимидин-трифосфат и могли участвовать в синтезе ДНК.

У ранних эмбрионов позвоночных, начиная с 8-клеточной стадии большинство клеток связано друг с другом щелевыми контактами. По мере дифференцировки эмбриона щелевые контакты между всеми клетками исчезают и остаются только между группами специализирующихся клеток. Например, при образовании нервной трубки связь клеток этой структуры с остальным эпидермисом прерывается, разобщается.

Целостность и функционирование щелевых контактов сильно зависит от уровня ионов Ca2+ внутри клетки. В норме концентрация кальция в цитоплазме очень низка. Если Ca2+ инъецировать в одну из клеток пласта культуры тканей, то в соседних клетках увеличения уровня Ca2+ в цитоплазме не происходит; клетки как бы разобщаются с соседями, перестают проводить электрический ток и красители. Через некоторое время, после того как введенный кальций будет аккумулирован митохондриями, структура и функции щелевых контактов восстанавливаются. Такое свойство очень важно для поддержания целостности и работы всего слоя клеток, так как повреждение одной из них не передается на соседний через щелевые контакты, которые перестают работать как межклеточные диффузионные каналы.

Синаптический контакт (синапсы). Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом - рецептором или эффектором (например, нервно-мышечное окончание). Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому (рис. 155). В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса. Синапсы образуются на отростках нервных клеток - это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс - это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством - синаптической щелью шириной около 20-30 нм. Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, - постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки (рис. 156, 157). Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка (см. ниже). У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон.

studfiles.net

Избирательная проницаемость

КЛЕТКА

Клетка – главный гистологический элемент. Эукариотическая клетка состоит из трех основных компартментов: плазматическая мембрана, ядро и цитоплазма со структурированными клеточными единицами (органеллы, включения). Важное значение для организации клеток имеют биологические мембраны, входящие в состав каждого клеточного компармента и многих органелл. Мембраны клеток имеют принципиально сходную организацию. Любую клетку снаружи ограничивает плазматическая мембрана.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Плазматическая мембрана согласно жидкостно-мозаичной модели, плазматическая мембрана с мозаичным расположением белков и липидов. В плоскости мембраны белки обладают латеральной подвижностью. Интегральные белки перераспределяются в мембранах в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного вещества. Основные функции плазматической мембраны: избирательная проницаемость, межклеточные взаимодействия, эндоцитоз, экзоцитоз.

Химический состав.

В состав плазматической мембраны входят липиды, холестерин, белки и углеводы.

Липиды (фосфолипиды, сфинголипиды, гликолипиды) составляют до 45% массы мембран.

Фосфолипиды. Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводородного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны в виде двойного слоя (бислой). Таким образом, в мембране хвосты фосфолипидов направлены внутрь бислоя, а головки обращены кнаружи.

Сфинголипиды - липиды, содержащие основание с длинной цепью (сфингозин или сходную с ним группу); сфинголипиды в значительном количестве находятся в миелиновых оболочках нервных волокон, слоёв модифицированной плазмолеммы шванновских клеток и олигодендроглиоцитов ЦНС.

Гликолипиды – молекулы содержащих олигосахариды липидов, присутствующие в наружной части бислоя, а их остатки сахаров ориентированы к поверхности клетки. Гликолипиды составляют 5% липидных молекул наружного монослоя.

Холестерин имеет чрезвычайно важное значение не только как компонент биологических мембран, на основе холестерина происходит синтез стероидных гормонов – половых, глюкокортикоидов, минералокортикоидов.

Белки составляют более 50% массы мембран. Белки плазмолеммы подразделяют на интегральные и периферические.

Интегральные мембранные белки прочно встроены в липидный бислой. Примеры интегральных мембранных белков - белки ионных каналов и рецепторные белки (мембранные рецепторы). Молекула белка, проходящая через всю толщу мембраны и выступающая из неё как на наружной, так и на внутренней поверхности, - трансмембранный белок.

Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны (наружной или внутренней) и нековалентно связаны с интегральными мембранными белками. Примерами периферических мембранных белков, связанных с наружной поверхностью мембраны, могут служить рецепторные и адгезионные белки. Примеры периферических мембранных белков, связанных с внутренней поверхностью мембраны, - белки, ассоциированные с цитоскелетом (например, дистрогликаны, белок полосы 4.1, протеинкиназа С), белки системы вторых посредников.

Углеводы (преимущественно олигосахариды) входят в состав гликопротеинов и гликолипидов мембраны, составляя 2-10% её массы. С углеводами клеточной поверхности взаимодействуют лектины. Цепи олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами пламолеммы, выступают на наружной поверхности мембран клетки и формируют поверхностную оболочку толщиной 5 - нм – гликокаликс. Гликокаликс участвует в процессах межклеточного узнавания, межклеточного взаимодействия, пристеночного пищеварения.

Трансмембранная избирательная проницаемость поддерживает клеточный гомеостаз, оптимальное содержание в клетке ионов, воды, ферментов и субстратов. Пути реализации избирательной проницаемости мембран: пассивный транспорт, облегченная диффузия, активный транспорт. Гидрофобный характер сердцевины бислоя определяет возможность (или невозможность) непосредственного проникновения через мембрану различных с физико-химической точки зрения веществ (в первую очередь, полярных и неполярных).

Неполярные вещества (например, холестерин и его производные) свободно проникают через биологические мембраны. По этой причине эндоцитоз и экзоцитоз полярных соединений (например, пептидных гормонов) происходят при помощи мембранных пузырьков, а секреция стероидных гормонов – без участия таких пузырьков. По этой же причине рецепторы неполярных молекул (например, стероидных гормонов) расположены внутри клетки.

Полярные вещества (например, белки и ионы) не могут проникать через биологические мембраны. Именно поэтому рецепторы полярных молекул (например, пептидных гормонов) встроены в плазматическую мембрану, а передачу сигнала к другим клеточным компартментам осуществляют вторые посредники. По этой же причине трансмембранный перенос полярных соединений осуществляют специальные системы, встроенные в биологические мембраны.

Межклеточные информационные взаимодействия

Клетка, воспринимая и трансформируя различные сигналы, реагирует на изменения окружающей её среды. Плазматическая мембрана – место приложения физических (например, кванты света в фоторецепторах), химических (например, вкусовые и обонятельные молекулы, рН), механических (например, давление или растяжение в механорецепторах) раздражителей внешней среды и сигналов информационного характера (например, гормоны, нейромедиаторы) из внутренней среды организма. При участии плазмолеммы происходят узнавание и агрегация (например, межклеточные контакты) как соседних клеток, так и клеток с компонентами внеклеточного вещества (например, адгезионные контакты, адресная миграция клеток и направленный рост аксонов в нейроонтогенезе). Информационные межклеточные взаимодействия укладываются в схему, предусматривающую следующую последовательность событий:

Сигнал → рецептор → (второй посредник) → ответ

Сигналы. Передачу сигналов от клетки к клетке осуществляют сигнальные молекулы (первый посредник), вырабатываемые в одних клетках и специфически воздействующие на другие клетки – клетки-мишени. Специфичность воздействия сигнальных молекул определяют присутствующие в клетках-мишенях рецепторы, связывающие только собственные лиганды. Все сигнальные молекулы (лиганды) – в зависимости от их физико-химической природы – подразделяют на полярные (точнее – гидрофильные) и аполярные (точнее – жирорастворимые).

Рецепторы регистрируют поступающий к клетке сигнал и передают его вторым посредникам. Различают мембранные и ядерные рецепторы.

Мембранные рецепторы – гликопротеины. Они контролируют проницаемость плазмолеммы путем изменения конформации белков ионных каналов (например, н-холинорецептор), регулируют поступление молекул в клетку (например, холестерина), связывают молекулы внеклеточного вещества с элементами цитоскелета (например, интегрины), регистрируют присутствие информационных сигналов (например, нейромедиаторов, квантов света, обонятельных молекул, антигенов, цитокинов, гормонов пептидной природы). Мембранные рецепторы регистрируют поступающий к клетке сигнал и передают его внутриклеточным химическим соединениям, опосредующим конечный эффект (вторые посредники). Функционально мембранные рецепторы подразделяют на каталитические, связанные с ионными каналами и оперирующие через G-белок.

Ядерные рецепторы – белки-рецепторы стероидных гормонов (минерально- и глюкокортикоиды, эстрогены, прогестерон, тестостерон), ретиноидов, тиреоидных гормонов, желчных кислот, витамина D3,. Каждый рецептор имеет область связывания лаганда и участок, взаимодействующий со специфическими последовательностями ДНК. Другими словами, ядерные рецепторы – активируемые лигандом транскриптиционные факторы. В геноме человека имеется более 30 ядерных рецепторов, лиганды которых находятся на стадии идентификации (сиротские рецепторы).

Внерецепторные низкомолекулярные сигналы. Некоторые низкомолекулярные сигналы (например, оксид азота и монооксид углерода) воздействуют на клетку-мишень, минуя рецепторы.

Оксид азота (NO) – газообразный медиатор межклеточных взаимодействий, образуется из L-аргинина при участии фермента NO-синтазы. В клетках-мишенях активирует гуанилатциклазу, что приводит к увеличению уровня второго посредника – цГМФ.

Монооксид углерода (угарный газ, СО). Как сигнальная молекула СО играет важную роль в иммунной, сердечно-сосудистой системах и периферической нервной системе.

Вторые посредники. Внутриклеточные сигнальные молекулы (вторые посредники) передают информацию с мембранных рецепторов на эффекторы (исполнительные молекулы), опосредующие ответ клетки на сигнал. Стимулы, такие как свет, запах, гормоны и другие химические сигналы (лиганды), инициируют ответ клетки-мишени, изменяя в ней уровень внутриклеточных вторых посредников. Вторые (внутриклеточные) посредники представлены многочисленным классом соединений. К ним относятся циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, диацилглицерол, Са2+.

Ответы клеток-мишеней. Функции клеток выполняются на разных уровнях реализации генетической информации (например, транскрипция, посттрансляционная модификация) и крайне разнообразны (например, изменения режима функционирования, стимуляция или подавление активности, перепрограммирование синтезов и так далее).

studfiles.net

плазматическая мембрана - это... Что такое плазматическая мембрана?

  • ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — (клеточная мембрана плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой …   Большой Энциклопедический словарь

  • плазматическая мембрана — плазматическая мембрана. См. плазмалемма. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • Плазматическая мембрана — У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… …   Википедия

  • плазматическая мембрана —  Plasma Membrane  Плазматическая мембрана (цитолемма, плазмолемма)  См. клеточная мембрана …   Толковый англо-русский словарь по нанотехнологии. - М.

  • плазматическая мембрана — plazmalema statusas T sritis augalininkystė apibrėžtis Paviršinė citoplazmos membrana, reguliuojanti medžiagų patekimą į ląstelę. atitikmenys: angl. plasma membrane; plasmalemma rus. плазмалемма; плазматическая мембрана …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — (клеточная мембрана, плазмалемма), биол. мембрана, окружающая протоплазму растит. и животных клеток. Участвует в регуляции обмена в в между клеткой и окружающей её средой …   Естествознание. Энциклопедический словарь

  • плазматическая мембрана — (см. плазма) иначе плазмалемма мембрана, окружающая протоплазму растительных, а также животных клеток; у многих клеток п ая мембрана является единственной структурой, служащей оболочкой (клетки крови, кожи и т. п.), у нек рых других (в частности… …   Словарь иностранных слов русского языка

  • Плазматическая мембрана —         плазмалемма (от греч. plásma, буквально вылепленное, оформленное и lémma оболочка, кожица), мембрана, окружающая протоплазму растительных и животных клеток (См. Клетка). У последних П. м. является внутренним (обязательным) компонентом… …   Большая советская энциклопедия

  • плазматическая мембрана — см. Клеточная оболочка …   Большой медицинский словарь

  • ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — наружный слой цитоплазмы клетки более плотной консистенции. Представляет собой функционирующую часть клетки, играющую чрезвычайно важную роль в регулировании состава клеточного содержимого. Все питательные вещества, поступающие в клетку, и все… …   Словарь ботанических терминов

dic.academic.ru


Смотрите также

Для любых предложений по сайту: [email protected]