Лечение суставов — артроз, артрит, остеохондроз и многое другое
Наружная клеточная мембрана
Основные функции и особенности строения клеточной мембраны
Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.
Строение клеточной мембраны
Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.
Строение клеточной мембраныМолекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.
Основные функции клеточной мембраны
Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.
Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.
Транспорт через клеточную мембрануУ многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.
Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.
С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.
Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.
У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).
Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.
Функции клеточной мембраны (кратко)
Защитный барьер | Отделяет внутренние органеллы клетки от внешней среды |
Регулирующая | Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой |
Разграничивающая (компартментализация) | Разделение внутреннего пространства клетки на независимые блоки (компартменты) |
Энергетическая | - Накопление и трансформация энергии; - световые реакции фотосинтеза в хлоропластах; - Всасывание и секреция. |
Рецепторная (информационная) | Участвует в формировании возбуждения и его проведения. |
Двигательная | Осуществляет движение клетки или отдельных ее частей. |
animals-world.ru
Клеточная мембрана: ее строение и функции
Содержание:
Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных «атомов» органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.
Что такое клеточная мембрана
Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.
Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.
История исследования клеточной мембраны
Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.
В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.
В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.
В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»
И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.
Рисунок клеточной мембраны.
Свойства и функции клеточной мембраны
Теперь давайте разберем, какие функции выполняет клеточная мембрана:
Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы
Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.
Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.
Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.
Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.
Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.
Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.
Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.
Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:
- Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
- Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
- Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.
Строение клеточной мембраны
В клеточной мембране имеются липиды трех классов:
- фосфолипиды (представляются собой комбинацию жиров и фосфора),
- гликолипиды (представляют собой комбинацию жиров и углеводов),
- холестерол.
Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.
Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.
Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.
Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.
Клеточная мембрана, видео
И в завершение образовательное видео о клеточной мембране.
Эта статья доступна на английском языке — Cell Membrane.
www.poznavayka.org
Мембрана в составе оболочки клеток
Наружная клеточная мембрана (плазмалемма, цитолемма, плазматическая мембрана) животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокаликсом. Назначение гликокаликса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания.
У растительных клеток поверх наружной клеточной мембраны располагается плотный целлюлозный слой с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.
У клеток грибов поверх плазмалеммы – плотный слой хитина.
У бактерий – муреина.
Свойства биологических мембран
1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные - внутрь. В уже готовые фосфолипидные слои могут встраиваться белки. Способность к самосборке имеет важное значение на клеточном уровне.
2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.
3. Текучесть мембран. Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных и других химических процессов в мембранах.
4. Фрагменты мембран не имеют свободных концов, так как замыкаются в пузырьки.
Функции наружной клеточной мембраны (плазмалеммы)
Основными функциями плазмалеммы являются следующие: 1) барьерная, 2) рецепторная, 3) обменная, 4)транспортная.
1. Барьерная функция. Она выражается в том, что плазмалемма ограничивает содержимое клетки, отделяя его от внешней среды, а внутриклеточные мембраны разделяют цитоплазму на отдельные реакционные отсеки-компартменты.
2. Рецепторная функция. Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.
Обменная функция определяется содержанием в биологических мембранах ферментных белков, являющихся биологическими катализаторами. Их активность меняется в зависимости от рН среды, температуры, давления, от концентрации как субстрата, так и самого фермента. Ферменты определяют интенсивность ключевых реакций метаболизма, а также их направленность.
Транспортная функция мембран. Мембрана обеспечивает избирательное проникновение в клетку и из клетки в окружающую среду различных химических веществ. Транспорт веществ необходим для поддержания в клетке соответствующего рН, надлежащей ионной концентрации, что обеспечивает эффективность работы клеточных ферментов. Транспорт поставляет питательные вещества, которые служат источником энергии, а также материалом для образования различных клеточных компонентов. От него зависит выведение из клетки токсических отходов, секреция различных полезных веществ и создание ионных градиентов, необходимых для нервной и мышечной активности, Изменение скорости переноса веществ может приводить к нарушениям биоэнергетических процессов, водно-солевого обмена, возбудимости и других процессов. Коррекция этих изменений лежит в основе действия многих лекарственных препаратов.
Существует два основных способа поступления веществ в клетку и вывода из клетки во внешнюю среду;
пассивный транспорт,
активный транспорт.
Пассивный транспорт идет по градиенту химической или электрохимической концентрации без затрат энергии АТФ. Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентрации этого вещества по обеим сторонам мембраны (градиент химической концентрации). Если же молекула заряжена, то на ее транспорт влияют как градиент химической концентрации, так и электрический градиент (мембранный потенциал).
Оба градиента вместе составляют электрохимический градиент. Пассивный транспорт веществ может осуществляться двумя способами простой диффузией и облегченной диффузией.
При простой диффузии ионы солей и вода, могут проникать через селективные каналы. Эти каналы образуются за счет некоторых трансмембранных белков, формирующих сквозные транспортные пути, открытые постоянно или только на короткое время. Через селективные каналы проникают различные молекулы, имеющие соответствующие каналам размер и заряд.
Имеется и другой путь простой диффузии - это диффузия веществ через липидный бислой, через который легко проходят жирорастворимые вещества и вода. Липидный бислой непроницаем для заряженных молекул (ионов), и в то же время незаряженные малые молекулы могут свободно диффундировать, при этом, чем меньше молекула, тем быстрее она транспортируется. Довольно большая скорость диффузии воды через липидный бислой как раз и объясняется малой величиной ее молекул и отсутствием заряда.
При облегченной диффузии в транспорте веществ участвуют белки – переносчики, работающие по принципу «пинг-понг». Белок при этом существует в двух конформационных состояниях: в состоянии «понг» участки связывания транспортируемого вещества открыты с наружной стороны бислоя, а в состоянии «пинг» такие же участки открываются с другой стороны. Этот процесс обратимый. С какой же стороны в данный момент времени будет открыт участок связывания вещества, зависит от градиента концентрации, этого вещества.
Таким способом через мембрану проходят сахара и аминокислоты.
При облегченной диффузии скорость транспортировки веществ значительно возрастает в сравнении с простой диффузией.
Кроме белков-переносчиков, в облегченной диффузии принимают участие некоторые антибиотики, например, грамицидин и валиномицин.
Поскольку они обеспечивают транспорт ионов, их называют ионофорами.
Активный транспорт веществ в клетке. Этот вид транспорта всегда идет с затратой энергии. Источником энергии, необходимой для активного транспорта, является АТФ. Характерной особенностью этого вида транспорта является то, что он осуществляется двумя способами:
с помощью ферментов, называемых АТФ-азами;
транспорт в мембранной упаковке (эндоцитоз).
В наружной клеточной мембране присутствуют такие белки-ферменты, как АТФ-азы, функция которых заключается в обеспечении активного транспорта ионов против градиента концентрации. Поскольку они обеспечивают транспорт ионов, то этот процесс называют ионным насосом.
Известны четыре основные системы транспорта ионов в животной клетке. Три из них обеспечивают перенос через биологические мембраны .Na+ и К+, Са+, Н+, а четвертый - перенос протонов при работе дыхательной цепи митохондрии.
Примером механизма активного транспорта ионов может служить натрий-калиевый насос в животных клетках. Он поддерживает в клетке постоянную концентрацию ионов натрия и калия, которая отличается от концентрации этих веществ в окружающей среде: в норме в клетке ионов натрия бывает меньше, чем в окружающей среде, а калия - больше.
Вследствие этого по законам простой диффузии калий стремится уйти из клетки, а натрий диффундирует в клетку. В противовес простой диффузии натрий - калиевый насос постоянно выкачивает из клетки натрий и вводит калий: на три молекулы выбрасываемого наружу натрия приходится две молекулы вводимого в клетку калия.
Обеспечивает этот транспорт ионов натрий-калий зависимая АТФ-аза -фермент локализующийся в мембране таким образом, что пронизывает всю ее толщу, С внутренней стороны мембраны к этому ферменту поступает натрий и АТФ, а с наружной - калий.
Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает натрий-калий зависимая АТФ-аза, активизирующаяся при повышении концентрации натрия внутри клетки или калия в окружающей среде.
Для энергообеспечения этого насоса необходим гидролиз АТФ. Этот процесс обеспечивает все тот же фермент натрий-калий зависимая АТФ-аза. При этом более одной трети АТФ, потребляемой животной клеткой в состоянии покоя, расходуется на работу натрий - калиевого насоса.
Нарушение правильной работы натрий - калиевого насоса приводит к различным серьезным заболеваниям.
КПД этого насоса превышает 50%, чего не достигают самые совершенные машины, созданные человеком.
Многие системы активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы (способствующие транспорту низкомолекулярных соединений). Например, активный транспорт некоторых сахаров и аминокислот внутрь животных клеток обусловливается градиентом иона натрия, причем чем выше градиент ионов натрия, тем больше скорость всасывания глюкозы. И, наоборот, если концентрация натрия в межклеточном пространстве заметно уменьшается, транспорт глюкозы останавливается. При этом натрий должен присоединиться к натрий - зависимому белку-переносчику глюкозы, который имеет два участка связывания: один для глюкозы, другой для натрия. Ионы натрия, проникающие в клетку, способствуют введению в клетку и белка-переносчика вместе с глюкозой. Ионы натрия, проникшие в клетку вместе с глюкозой, выкачиваются обратно натрий -калий зависимой АТФ-азой, которая, поддерживая градиент концентрации натрия, косвенным путем контролирует транспорт глюкозы.
Транспорт веществ в мембранной упаковке. Крупные молекулы биополимеров практически не могут проникать через плазмалемму ни одним из вышеописанных механизмов транспорта веществ в клетку. Они захватываются клеткой и поглощаются в мембранной упаковке, что получило название эндоцитоза. Последний формально разделяют на фагоцитоз и пиноцитоз. Захват клеткой твердых частиц - это фагоцитоз, а жидких - пиноцитоз. При эндоцитозе наблюдаются следующие стадии:
рецепция поглощаемого вещества за счет рецепторов в мембране клеток;
инвагинация мембраны с образованием пузырька (везикулы);
отрыв эндоцитозного пузырька от мембраны с затратой энергии – образование фагосомы и восстановление целостности мембраны;
- слияние фагосомы с лизосомой и образование фаголизосомы (пищеварительной вакуоли) в которой происходит переваривание поглощенных частиц;
выведение непереваренного в фаголизосоме материала из клетки (экзоцитоз).
В животном мире эндоцитоз является характерным способом питания многих одноклеточных организмов (например, у амеб), а среди много клеточных этот вид переваривания пищевых частиц встречается в энтодермальных клетках у кишечнополостных. Что касается млекопитающих и человека, то у них имеется ретикуло-гистио-эндотелиальная система клеток, обладающих способностью к эндоцитозу. Примером могут служить лейкоциты крови и купферовские клетки печени. Последние выстилают так называемые синусоидные капилляры печени и захватывают взвешенные в крови различные чужеродные частицы. Экзоцитоз - это и способ выведения из клетки многоклеточного организма секретируемого ею субстрата, необходимого для функции других клеток, тканей и органов.
studfiles.net
Клеточная мембрана
Клеточная мембрана – это плоскостная структура, из которой построена клетка. Она присутствует у всех организмов. Её уникальные свойства обеспечивают жизнедеятельность клеток.Можно выделить три вида клеточных мембран:
- наружная;
- ядерная;
- мембраны органоидов.
Наружная цитоплазматическая мембрана создаёт границы клетки. Её не надо путать с клеточной стенкой или оболочкой, имеющейся у растений, грибов и бактерий.
Отличие клеточной стенки от клеточной мембраны в значительно большей толщине и преобладании защитной функции над обменной. Мембрана располагается под клеточной стенкой.
Ядерная мембрана отделяет от цитоплазмы содержимое ядра.
Среди органоидов клетки есть такие, форма которых образована одной или двумя мембранами:
- митохондрии;
- пластиды;
- вакуоли;
- комплекс Гольджи;
- лизосомы;
- эндоплазматическая сеть (ЭПС).
По современным представлениям структура клеточной мембраны описывается с помощью жидкостномозаичной модели. Основу мембраны составляет билипидный слой – два уровня молекул липидов, образующих плоскость. С обеих сторон на билипидном слое расположены молекулы белков. Некоторые белки погружены в билипидный слой, некоторые проходят через него.
Рис. 1. Клеточная мембрана.
Животные клетки на поверхности мембраны имеют комплекс углеводов. При изучении клетки под микроскопом отмечено, что мембрана находится в постоянном движении и неоднородна по строению.
Мембрана является мозаикой и в морфологическом, и в функциональном смысле, т. к. её различные участки содержат различные вещества и имеют разные физиологические свойства.
Любая пограничная структура осуществляет защитные и обменные функции. Это касается и всех видов мембран.
Осуществлению данных функций способствуют такие свойства, как:
- пластичность;
- высокая способность к восстановлению;
- полупроницаемость.
Свойство полупроницаемости заключается в том, что одни вещества не пропускаются мембраной, а другие пропускаются свободно. Так осуществляется контролирующая функция мембраны.
Также наружная мембрана обеспечивает связь между клетками за счёт многочисленных выростов и выделения клеящего вещества, заполняющего межклеточное пространство.
Поступление веществ через наружную мембрану идёт следующими путями:
- через поры с помощью ферментов;
- через мембрану непосредственно;
- пиноцитозом;
- фагоцитозом.
Первыми двумя способами транспортируются ионы и мелкие молекулы. Крупные молекулы поступают в клетку путём пиноцитоза (в жидком состоянии) и фагоцитоза (в твёрдом виде).
Рис. 2. Схема пино- и фагоцитоза.
Мембрана обхватывает пищевую частицу и замыкает её в пищеварительную вакуоль.
Вода и ионы проходят в клетку без затрат энергии, пассивным транспортом. Крупные молекулы перемещаются активным транспортом, с затратой энергетических ресурсов.
От 30 % до 50 % объёма клетки занимает эндоплазматическая сеть. Это своеобразная система полостей и каналов, связывающая все части клетки и обеспечивающая упорядоченную внутриклеточную транспортировку веществ.
Рис. 3. Рисунок ЭПС.
Таким образом, в ЭПС сосредоточена значительная масса клеточных мембран.
Мы выяснили что такое клеточная мембрана в биологии. Это структура, на основе которой построены все живые клетки. Её значение в клетке заключается в: отграничении пространства органоидов, ядра и клетки в целом, обеспечении избирательного поступления веществ в клетку и ядро. В состав мембраны входят молекулы липидов и белков.
Средняя оценка: 4.7. Всего получено оценок: 233.
Page 2
Образовака Биология
- Роль бактерий в природе и жизни человекаТест
- Охраняемые виды покрытосеменных растенийТест
- ФотосинтезТест
obrazovaka.ru
Наружная клеточная мембрана
1 – полярная головка молекулы фосфолипида
2 – жирнокислотный хвост молекулы фосфолипида
3 – интегральный белок
4 – периферический белок
5 – полуинтегральный белок
6 – гликопротеин
7 - гликолипид
Наружная клеточная мембрана присуща всем клеткам (животным и растительным), имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.
В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.
Функции мембран:
- защитная, пограничная, барьерная;
- транспортная;
- рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;
- участвуют в образовании межклеточных контактов;
- обеспечивают движение некоторых клеток (амебовидное движение).
У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.
У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.
Транспорт веществ через цитоплазматическую мембрану.
Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:
1.Пассивный транспорт.
2.Активный транспорт.
Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.
Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос – это особый белок мембраны, приводит его в движение АТФ.
Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.
Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.
Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.
При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.
Различают два типа эндоцитоза:
1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),
2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.
Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.
Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.
Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.
Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.
Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).
К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.
Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.
Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.
Митохондрии–это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.
Пластиды–органеллы, встречающиеся преимущественно в растительных клетках. Они бывают трех типов: хлоропласты, содержащие пигмент зеленого цвета; хромопласты (пигменты красного, желтого, оранжевого цвета); лейкопласты (бесцветные).
- Хлоропласты благодаря зеленому пигменту хлорофиллу, способны синтезировать органические вещества из неорганических, используя энергию солнца.
- Хромопласты придают яркую окраску цветам и плодам.
- Лейкопласты способны накапливать запасные питательные вещества: крахмал, липиды, белки и др.
Эндоплазматическая сеть(ЭПС) представляет собой сложную систему вакуолей и каналов, которые ограничены мембранами. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Гладкая не имеет на своей мембране рибосом. В ней происходит синтез липидов, липопротеидов, накопление и выведение из клетки ядовитых веществ. Гранулярная ЭПС имеет рибосомы на мембранах, в которых синтезируются белки. Затем белки поступают в комплекс Гольджи, а оттуда наружу.
Комплекс Гольджи (аппарат Гольджи) представляет собой стопку уплощенных мембранных мешочков – цистерн и связанную с ними систему пузырьков. Стопка цистерн называется диктиосома.
Функции комплекса Гольджи: модификация белков, синтез полисахаридов, транспорт веществ, формирование клеточной мембраны, образование лизосом.
Лизосомы–представляют собой окруженные мембраной пузырьки, содержащие ферменты. Они осуществляют внутриклеточное расщепление веществ и подразделяются на первичные и вторичные. Первичные лизосомы содержат ферменты в неактивной форме. После попадания в органеллы различных веществ происходит активация ферментов и начинается процесс переваривания – это вторичные лизосомы.
Пероксисомыимеют вид пузырьков, ограниченных одной мембраной. Они содержат ферменты, которые расщепляют токсичную для клеток перекись водорода.
Вакуоли–это органеллы клеток растений, содержащие клеточный сок. В клеточном соке могут находиться запасные питательные вещества, пигменты, отходы жизнедеятельности. Вакуоли участвуют в создании тургорного давления, в регуляции водно – солевого обмена.
Рибосомы–органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.
Клеточный центр–встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.
Микротрубочки–трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.
Микрофиламенты–нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.
Дата добавления: 2015-10-19; просмотров: 456; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
ПОСМОТРЕТЬ ЕЩЕ:
helpiks.org
Клеточная мембрана. Функции клеточной мембраны. Строение клеточной мембраны.
1. Клеточная мембрана2. Функции клеточной мембраны3. Cтроение клеточной мембраны4. Состав клеточной мембраны5. Основное назначение клеточной мембраны6. Структура клеточной мембраныКлеточная мембрана или цитолемма или плазмалемма или плазматическая мембрана - эластическая молекулярная структура. Её толщина составляет от 6 до 10 нм. Рассматривая строение клеточной мембраны, можно сказать, что она состоит из белков (около 40%) и липидов (около 60%).
По функциональным особенностям клеточную мембрану можно разделить на 9 выполняемых ей функций. Функции клеточной мембраны: 1. Транспортная. Производит транспорт веществ из клетки в клетку; 2. Барьерная. Обладает избирательной проницаемостью, обеспечивает необходимый обмен веществ; 3. Рецепторная. Некоторые белки находящиеся в мембране являются рецепторами; 4. Механическая. Обеспечивает автономность клетки и её механических структур; 5. Матричная. Обеспечивает оптимальное взаимодействие и ориентацию матричных белков; 6. Энергетическая. В мембранах действуют системы переноса энергии при клеточном дыхании в митохондриях; 7. Ферментативная. Мембранные белки иногда являются ферментами. Например мембраны клеток кишечника; 8. Маркировочная. На мембране есть антигены (гликопротеины), которые позволяют опознать клетку;
9. Генерирующая. Осуществляет генерацию и проведение биопотенциалов.
Посмотреть как выглядит клеточная мембрана можно на примере строения животной клетки или растительной клетки.
На рисунке приведено строение клеточной мембраны. К компонентам клеточной мембраны можно отнести различные белки клеточной мембраны (глобулярный, переферический, поверхностный), а также липиды клеточной мембраны (гликолипид, фосфолипид). Таже в строении клеточной мембраны присутствуют углеводы, холестерол, гликопротеин и белковая альфа спираль.
К основному составу клеточной мембраны относятся: 1. Белки - отвечающие за разнообразные свойства мембраны; 2. Липиды трёх видов (фосфолипиды, гликолипиды и холестерол) отвечающих за жёсткость мембраны. Белки клеточной мембраны: 1. Глобулярный белок; 2. Поверхностный белок; 3. Переферический белок.
Основное назначение клеточной мембраны: 1. Регулировать обмен между клеткой и средой; 2. Отделять содержимое любой клетки от внешней среды тем самым обеспечивая её целостность;
3. Внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - органеллы или компартменты, в которых поддерживаются определённые условия среды.
Структура клеточной мембраны представляют собой двумерный раствор глобулярных интегральных белков, растворенных в жидком фосфолипидном матриксе. Данная модель мембранной структуры была предложена двумя учёными Никольсоном и Сингером в 1972 году. Таким образом, основу мембран составляет бимолекулярный липидный слой, с упорядоченным расположением молекул, что вы могли видеть на этом рисунке.
www.new-era.me
Наружная клеточная мембрана
1 – полярная головка молекулы фосфолипида
2 – жирнокислотный хвост молекулы фосфолипида
3 – интегральный белок
4 – периферический белок
5 – полуинтегральный белок
6 – гликопротеин
7 - гликолипид
Наружная клеточная мембрана присуща всем клеткам (животным и растительным), имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.
В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.
Функции мембран:
- защитная, пограничная, барьерная;
- транспортная;
- рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;
- участвуют в образовании межклеточных контактов;
- обеспечивают движение некоторых клеток (амебовидное движение).
У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.
У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.
Транспорт веществ через цитоплазматическую мембрану.
Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:
1.Пассивный транспорт.
2.Активный транспорт.
Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.
Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос – это особый белок мембраны, приводит его в движение АТФ.
Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.
Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.
Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.
При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.
Различают два типа эндоцитоза:
1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),
2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.
Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.
Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.
Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.
Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.
Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).
К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.
Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.
Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.
Митохондрии–это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.
Пластиды–органеллы, встречающиеся преимущественно в растительных клетках. Они бывают трех типов: хлоропласты, содержащие пигмент зеленого цвета; хромопласты (пигменты красного, желтого, оранжевого цвета); лейкопласты (бесцветные).
- Хлоропласты благодаря зеленому пигменту хлорофиллу, способны синтезировать органические вещества из неорганических, используя энергию солнца.
- Хромопласты придают яркую окраску цветам и плодам.
- Лейкопласты способны накапливать запасные питательные вещества: крахмал, липиды, белки и др.
Эндоплазматическая сеть(ЭПС) представляет собой сложную систему вакуолей и каналов, которые ограничены мембранами. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Гладкая не имеет на своей мембране рибосом. В ней происходит синтез липидов, липопротеидов, накопление и выведение из клетки ядовитых веществ. Гранулярная ЭПС имеет рибосомы на мембранах, в которых синтезируются белки. Затем белки поступают в комплекс Гольджи, а оттуда наружу.
Комплекс Гольджи (аппарат Гольджи) представляет собой стопку уплощенных мембранных мешочков – цистерн и связанную с ними систему пузырьков. Стопка цистерн называется диктиосома.
Функции комплекса Гольджи: модификация белков, синтез полисахаридов, транспорт веществ, формирование клеточной мембраны, образование лизосом.
Лизосомы–представляют собой окруженные мембраной пузырьки, содержащие ферменты. Они осуществляют внутриклеточное расщепление веществ и подразделяются на первичные и вторичные. Первичные лизосомы содержат ферменты в неактивной форме. После попадания в органеллы различных веществ происходит активация ферментов и начинается процесс переваривания – это вторичные лизосомы.
Пероксисомыимеют вид пузырьков, ограниченных одной мембраной. Они содержат ферменты, которые расщепляют токсичную для клеток перекись водорода.
Вакуоли–это органеллы клеток растений, содержащие клеточный сок. В клеточном соке могут находиться запасные питательные вещества, пигменты, отходы жизнедеятельности. Вакуоли участвуют в создании тургорного давления, в регуляции водно – солевого обмена.
Рибосомы–органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.
Клеточный центр–встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.
Микротрубочки–трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.
Микрофиламенты–нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.
Дата добавления: 2014-12-30; просмотров: 143; Нарушение авторских прав
lektsii.com